-
2
-
-
77956968984
-
An Introduction to Inductive Definitions
-
J. Barwise, editor, North-Holland Publishing Company
-
P. Aczel. An Introduction to Inductive Definitions. In J. Barwise, editor, Handbook of Mathematical Logic, pages 739-782. North-Holland Publishing Company, 1977.
-
(1977)
Handbook of Mathematical Logic
, pp. 739-782
-
-
Aczel, P.1
-
5
-
-
84949501091
-
Nested general recursion and partiality in type theory
-
R. J. Boulton and P. B. Jackson, editors, Theorem Proving in Higher Order Logics: 14th International Conference, TPHOLs 2001, Springer- Verlag, September
-
A. Bove and V. Capretta. Nested general recursion and partiality in type theory. In R. J. Boulton and P. B. Jackson, editors, Theorem Proving in Higher Order Logics: 14th International Conference, TPHOLs 2001, volume 2152 of Lecture Notes in Computer Science, Springer- Verlag, pages 121-135, September 2001.
-
(2001)
Lecture Notes in Computer Science
, vol.2152
, pp. 121-135
-
-
Bove, A.1
Capretta, V.2
-
8
-
-
84855618972
-
Type-based termination of recursive definitions
-
Under consideration for publication December
-
G. Barthe, M.J. Frade, E. Giménez, L. Pinto, and T. Uustalu. Type-based termination of recursive definitions. Under consideration for publication in Math. Struct. in Comp. Science, December 2000.
-
(2000)
Math. Struct. in Comp. Science
-
-
Barthe, G.1
Frade, M.J.2
Giménez, E.3
Pinto, L.4
Uustalu, T.5
-
9
-
-
0011521175
-
-
November Licentiate Thesis of the Department of Computer Science, Chalmers University of Technology
-
A. Bove. Programming in Martin-Löf type theory: Unification - A non-trivial example, November 1999. Licentiate Thesis of the Department of Computer Science, Chalmers University of Technology. Available on the WWW http://cs.chalmers.se/∼bove/Papers/lic_thesis.ps.gz.
-
(1999)
Programming in Martin-Löf Type Theory: Unification - A Non-trivial Example
-
-
Bove, A.1
-
10
-
-
24944542927
-
Simple general recursion in type theory
-
Spring
-
A. Bove. Simple general recursion in type theory. Nordic Journal of Computing, 8(1):22-42, Spring 2001.
-
(2001)
Nordic Journal of Computing
, vol.8
, Issue.1
, pp. 22-42
-
-
Bove, A.1
-
11
-
-
0842288106
-
-
PhD thesis, Department of Computing Science, Chalmers University of Technology, November
-
A. Bove. General Recursion in Type Theory. PhD thesis, Department of Computing Science, Chalmers University of Technology, November 2002. Available on the WWW http://cs.chalmers.se/∼bove/Papers/phd_thesis.ps.gz.
-
(2002)
General Recursion in Type Theory
-
-
Bove, A.1
-
14
-
-
0001549561
-
Type theory and programming
-
February
-
T. Coquand, B. Nordström, J. M. Smith, and B. von Sydow. Type theory and programming. EATCS, 52, February 1994.
-
(1994)
EATCS
, vol.52
-
-
Coquand, T.1
Nordström, B.2
Smith, J.M.3
Von Sydow, B.4
-
15
-
-
24944476702
-
A step towards the mechanization of partial functions: Domains as inductive predicates
-
M. Kerber, editor, July WORKSHOP Mechanization of Partial Functions
-
C. Dubois and V. Viguí Donzeau-Gouge. A step towards the mechanization of partial functions: Domains as inductive predicates. In M. Kerber, editor, CADE-15, The 15th International Conference on Automated Deduction, pages 53-62, July 1998. WORKSHOP Mechanization of Partial Functions.
-
(1998)
CADE-15, the 15th International Conference on Automated Deduction
, pp. 53-62
-
-
Dubois, C.1
Donzeau-Gouge, V.V.2
-
16
-
-
0034403161
-
A general formulation of simultaneous inductive-recursive definitions in type theory
-
June
-
P. Dybjer. A general formulation of simultaneous inductive-recursive definitions in type theory. Journal of Symbolic Logic, 65(2), June 2000.
-
(2000)
Journal of Symbolic Logic
, vol.65
, Issue.2
-
-
Dybjer, P.1
-
17
-
-
0031076662
-
Partial functions in a total setting
-
S. Finn, M.P. Fourman, and J. Longley. Partial functions in a total setting. Journal of Automated Reasoning, 18(1):85-104, 1997.
-
(1997)
Journal of Automated Reasoning
, vol.18
, Issue.1
, pp. 85-104
-
-
Finn, S.1
Fourman, M.P.2
Longley, J.3
-
18
-
-
0031212315
-
Termination of nested and mutually recursive algorithms
-
J. Giesl. Termination of nested and mutually recursive algorithms. Journal of Automated Reasoning, 19:1-29, 1997.
-
(1997)
Journal of Automated Reasoning
, vol.19
, pp. 1-29
-
-
Giesl, J.1
-
19
-
-
35248889111
-
Theorem Proving in Higher Order Logics: 13th International Conference, TPHOLs 2000
-
J. Harrison and M. Aagaard, editors. Springer-Verlag
-
J. Harrison and M. Aagaard, editors. Theorem Proving in Higher Order Logics: 13th International Conference, TPHOLs 2000, volume 1869 of Lecture Notes in Computer Science. Springer-Verlag, 2000.
-
(2000)
Lecture Notes in Computer Science
, vol.1869
-
-
-
20
-
-
0002386430
-
The formulae-as-types notion of construction
-
J. P. Seldin and J. R. Hindley, editors, Academic Press, London
-
W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin and J. R. Hindley, editors, To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 479-490. Academic Press, London, 1980.
-
(1980)
To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism
, pp. 479-490
-
-
Howard, W.A.1
-
21
-
-
35248848487
-
-
S. Peyton Jones, J. Hughes, (editors), February
-
S. Peyton Jones, J. Hughes, (editors), L. Augustsson, D. Barton, B. Boutel, W. Burton, J. Fasel, K. Hammond, R. Hinze, P. Hudak, T. Johnsson, M. Jones, J. Launchbury, E. Meijer, J. Peterson, A. Reid, C. Runciman, and P. Wadler. Report on the Programming Language Haskell 98, a Non-strict, Purely Functional Language. Available from http://haskell.org, February 1999.
-
(1999)
Report on the Programming Language Haskell 98, a Non-strict, Purely Functional Language
-
-
Augustsson, L.1
Barton, D.2
Boutel, B.3
Burton, W.4
Fasel, J.5
Hammond, K.6
Hinze, R.7
Hudak, P.8
Johnsson, T.9
Jones, M.10
Launchbury, J.11
Meijer, E.12
Peterson, J.13
Reid, A.14
Runciman, C.15
Wadler, P.16
-
23
-
-
0004659597
-
Properties of programs and partial function logic
-
Z. Manna and J. McCarthy. Properties of programs and partial function logic. Machine Intelligence, 5:27-37, 1970.
-
(1970)
Machine Intelligence
, vol.5
, pp. 27-37
-
-
Manna, Z.1
McCarthy, J.2
-
25
-
-
0011521179
-
Terminating General Recursion
-
October
-
B. Nordström. Terminating General Recursion. BIT, 28(3):605-619, October 1988.
-
(1988)
BIT
, vol.28
, Issue.3
, pp. 605-619
-
-
Nordström, B.1
-
27
-
-
0022953552
-
Proving Termination of Normalization Functions for Conditional Expressions
-
L. C. Paulson. Proving Termination of Normalization Functions for Conditional Expressions. Journal of Automated Reasoning, 2:63-74, 1986.
-
(1986)
Journal of Automated Reasoning
, vol.2
, pp. 63-74
-
-
Paulson, L.C.1
-
28
-
-
84956866968
-
Function definition in higher-order logic
-
Theorem Proving in Higher Order Logics, Turku, Finland, August
-
K. Slind. Function definition in higher-order logic. In Theorem Proving in Higher Order Logics, volume 1125 of Lecture Notes in Computer Science, Turku, Finland, August 1996.
-
(1996)
Lecture Notes in Computer Science
, vol.1125
-
-
Slind, K.1
|