메뉴 건너뛰기




Volumn , Issue , 2007, Pages

Joint object segmentation and behavior classification in image sequences

Author keywords

[No Author keywords available]

Indexed keywords

GESTURE RECOGNITION; IMAGE CLASSIFICATION; IMAGE SEGMENTATION; PROBABILITY; ROBUSTNESS (CONTROL SYSTEMS);

EID: 35148870133     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2007.383234     Document Type: Conference Paper
Times cited : (7)

References (25)
  • 2
    • 33646584465 scopus 로고    scopus 로고
    • X. Bresson, P. Vandergheynst, and J.-P. Thiran. A variational model for object segmentation using boundary information and shape prior driven by the MumfordShah functional. International Journal of Computer Vision, 28(2):145-162, July 2006. 2, 4, 5
    • X. Bresson, P. Vandergheynst, and J.-P. Thiran. A variational model for object segmentation using boundary information and shape prior driven by the MumfordShah functional. International Journal of Computer Vision, 28(2):145-162, July 2006. 2, 4, 5
  • 4
    • 0035248865 scopus 로고    scopus 로고
    • T. Chan and L. Vese. Active contours without edges. IEEE Transactions on Image Processing, 10(2):266-277, 2001. 3, 5
    • T. Chan and L. Vese. Active contours without edges. IEEE Transactions on Image Processing, 10(2):266-277, 2001. 3, 5
  • 5
    • 0036892488 scopus 로고    scopus 로고
    • Y. Chen, H. Tagare, S. Thiruvenkadam, F. Huang, D. Wilson, K. Gopinath, R. Briggs, and E. Geiser. Using prior shapes in geometric active contours in a variational framework. International Journal of Computer Vision, 50(3):315-328, 2002. 2
    • Y. Chen, H. Tagare, S. Thiruvenkadam, F. Huang, D. Wilson, K. Gopinath, R. Briggs, and E. Geiser. Using prior shapes in geometric active contours in a variational framework. International Journal of Computer Vision, 50(3):315-328, 2002. 2
  • 8
    • 35048854708 scopus 로고    scopus 로고
    • Kernel density estimation and intrinsic alignment for knowledge-driven segmentation: Teaching level sets to walk
    • D. Cremers, S. Osher, and S. Soatto. Kernel density estimation and intrinsic alignment for knowledge-driven segmentation: Teaching level sets to walk. Pattern Recognition, 3175:36-44, 2004. 2
    • (2004) Pattern Recognition , vol.3175 , Issue.36-44 , pp. 2
    • Cremers, D.1    Osher, S.2    Soatto, S.3
  • 9
    • 35048887548 scopus 로고    scopus 로고
    • Multiphase dynamic labeling for variational recognition-driven image segmentation
    • 2, 3
    • D. Cremers, N. Sochen, and C. Schnör. Multiphase dynamic labeling for variational recognition-driven image segmentation. In European Conf. on Computer Vision, volume 3024, pages 74-86, 2004. 2, 3
    • (2004) European Conf. on Computer Vision , vol.3024 , pp. 74-86
    • Cremers, D.1    Sochen, N.2    Schnör, C.3
  • 10
    • 5044219562 scopus 로고    scopus 로고
    • Simultaneous object recognition and segmentation by image exploration
    • V. Ferrari, T. Tuytelaars, and L. V. Gool. Simultaneous object recognition and segmentation by image exploration. In ECCV, 2004. 2
    • (2004) ECCV , pp. 2
    • Ferrari, V.1    Tuytelaars, T.2    Gool, L.V.3
  • 11
    • 35148886005 scopus 로고    scopus 로고
    • A variational framework for the simultaneous segmentation and object behavior classification of image sequences
    • In press
    • L. Gui, J.-P. Thiran, and N. Paragios. A variational framework for the simultaneous segmentation and object behavior classification of image sequences. In Proc. Scale Space and Variational Methods in Computer Vision, 2007. In press. 1, 4
    • (2007) Proc. Scale Space and Variational Methods in Computer Vision , vol.1 , pp. 4
    • Gui, L.1    Thiran, J.-P.2    Paragios, N.3
  • 13
    • 33745950871 scopus 로고    scopus 로고
    • I. Kokkinos and P. Maragos. An Expectation Maximization approach to the synergy between image segmentation and object categorization. In ICCV, pages 617-624, 2005. 2
    • I. Kokkinos and P. Maragos. An Expectation Maximization approach to the synergy between image segmentation and object categorization. In ICCV, pages 617-624, 2005. 2
  • 14
    • 33646014576 scopus 로고    scopus 로고
    • Combined object categorization and segmentation with an implicit shape model
    • B. Leibe, A. Leonardis, and B. Schiele. Combined object categorization and segmentation with an implicit shape model. In ECCV Workshop on SLCV, 2004. 2
    • (2004) ECCV Workshop on SLCV , pp. 2
    • Leibe, B.1    Leonardis, A.2    Schiele, B.3
  • 16
    • 84990602490 scopus 로고
    • Optimal approximations by piecewise smooth functions and associated variational problems
    • D. Mumford and J.Shah. Optimal approximations by piecewise smooth functions and associated variational problems. Communications in Pure and Applied Mathematics, 42:577-685, 1989. 1
    • (1989) Communications in Pure and Applied Mathematics , vol.42 , Issue.577-685 , pp. 1
    • Mumford, D.1    Shah, J.2
  • 17
    • 44749084234 scopus 로고
    • Fronts propagating with curvature-dependent speed: Algorithms based on the Hamilton-Jacobi formulation
    • 79
    • S. Osher and J. Sethian. Fronts propagating with curvature-dependent speed: Algorithms based on the Hamilton-Jacobi formulation. Journal of Computational Physics, 79:12-49, 1988. 1, 4
    • (1988) Journal of Computational Physics , vol.12-49 , Issue.1 , pp. 4
    • Osher, S.1    Sethian, J.2
  • 18
    • 0036474209 scopus 로고    scopus 로고
    • Geodesic active regions and level set methods for supervised texture segmentation
    • 463
    • N. Paragios and R. Deriche. Geodesic active regions and level set methods for supervised texture segmentation. International Journal of Computer Vision, 46(3):223-247, 2002. 1
    • (2002) International Journal of Computer Vision , vol.223-247 , pp. 1
    • Paragios, N.1    Deriche, R.2
  • 19
    • 9644294262 scopus 로고    scopus 로고
    • Geodesic active regions and level set methods for motion estimation and tracking
    • N. Paragios and R. Deriche. Geodesic active regions and level set methods for motion estimation and tracking. Computer Vision and Image Understanding, 97:259-282, 2005. 2
    • (2005) Computer Vision and Image Understanding , vol.97 , Issue.259-282 , pp. 2
    • Paragios, N.1    Deriche, R.2
  • 21
    • 0024610919 scopus 로고    scopus 로고
    • L. R. Rabiner. A tutorial on Hidden Markov Models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 1989. 2, 3, 6
    • L. R. Rabiner. A tutorial on Hidden Markov Models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 1989. 2, 3, 6
  • 22
    • 24644477136 scopus 로고    scopus 로고
    • Particle filtering for geometric active contours with application to tracking moving and deforming objects
    • Y. Rathi, N. Vaswani, A. Tannenbaum, and A. Yezzi. Particle filtering for geometric active contours with application to tracking moving and deforming objects. In Proc. CVPR, volume 2, pages 2-9, 2005. 2
    • (2005) Proc. CVPR , vol.2
    • Rathi, Y.1    Vaswani, N.2    Tannenbaum, A.3    Yezzi, A.4
  • 23
    • 35148896650 scopus 로고    scopus 로고
    • D. Terzopoulos and R. Szeliski. Tracking with Kalman snakes. Active vision, pages 3-20, 1993. 2
    • D. Terzopoulos and R. Szeliski. Tracking with Kalman snakes. Active vision, pages 3-20, 1993. 2
  • 24
    • 0344120328 scopus 로고    scopus 로고
    • Z. Tu, X. Chen, A. Yuille, and S. Zhu. Image parsing: Segmentation, detection, and recognition. In ICCV, pages 18-25, 2003. 2
    • Z. Tu, X. Chen, A. Yuille, and S. Zhu. Image parsing: Segmentation, detection, and recognition. In ICCV, pages 18-25, 2003. 2
  • 25
    • 0036891794 scopus 로고    scopus 로고
    • A multiphase level set framework for image segmentation using the Mumford and Shah model
    • 503
    • L. Vese and T. Chan. A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision, 50(3):271-293, 2002. 1
    • (2002) International Journal of Computer Vision , vol.271-293 , pp. 1
    • Vese, L.1    Chan, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.