메뉴 건너뛰기




Volumn 76, Issue 4, 2007, Pages

Goldstone mode of optical parametric oscillators in planar semiconductor microcavities in the strong-coupling regime

Author keywords

[No Author keywords available]

Indexed keywords

LASER BEAMS; MICROCAVITIES; PHASE CONTROL; SEMICONDUCTOR DEVICES; SPECTRUM ANALYSIS;

EID: 35148842882     PISSN: 10502947     EISSN: 10941622     Source Type: Journal    
DOI: 10.1103/PhysRevA.76.043807     Document Type: Article
Times cited : (73)

References (51)
  • 2
    • 36149026335 scopus 로고
    • PHRVAO 0031-899X 10.1103/PhysRev.112.1900
    • P. W. Anderson, Phys. Rev. PHRVAO 0031-899X 10.1103/PhysRev.112.1900 112, 1900 (1958).
    • (1958) Phys. Rev. , vol.112 , pp. 1900
    • Anderson, P.W.1
  • 6
    • 12044252828 scopus 로고
    • RMPHAT 0034-6861 10.1103/RevModPhys.65.851
    • M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.65.851 65, 851 (1993).
    • (1993) Rev. Mod. Phys. , vol.65 , pp. 851
    • Cross, M.C.1    Hohenberg, P.C.2
  • 8
    • 0000885178 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.83.5278
    • M. Vaupel, A. Maître, and C. Fabre, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.83.5278 83, 5278 (1999)
    • (1999) Phys. Rev. Lett. , vol.83 , pp. 5278
    • Vaupel, M.1    Maître, A.2    Fabre, C.3
  • 9
    • 0010903718 scopus 로고    scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.64.023803
    • S. Ducci, N. Treps, A. Maître, and C. Fabre, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.64.023803 64, 023803 (2001).
    • (2001) Phys. Rev. A , vol.64 , pp. 023803
    • Ducci, S.1    Treps, N.2    Maître, A.3    Fabre, C.4
  • 10
  • 11
    • 0000184273 scopus 로고
    • JMOPEW 0950-0340 10.1080/09500349414551091
    • G.-L. Oppo, J. Mod. Opt. JMOPEW 0950-0340 10.1080/09500349414551091 41, 1151 (1994)
    • (1994) J. Mod. Opt. , vol.41 , pp. 1151
    • Oppo, G.-L.1
  • 12
    • 0000991774 scopus 로고    scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.53.4488
    • S. Longhi, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.53.4488 53, 4488 (1996)
    • (1996) Phys. Rev. A , vol.53 , pp. 4488
    • Longhi, S.1
  • 13
    • 84919696421 scopus 로고
    • JMOPEW 0950-0340 10.1080/09500349514551101
    • K. Staliunas, J. Mod. Opt. JMOPEW 0950-0340 10.1080/09500349514551101 42, 1261 (1995)
    • (1995) J. Mod. Opt. , vol.42 , pp. 1261
    • Staliunas, K.1
  • 15
    • 5344244218 scopus 로고
    • JMOPEW 0950-0340 10.1080/09500349114550201
    • J. Y. Courtois, J. Mod. Opt. JMOPEW 0950-0340 10.1080/09500349114550201 38, 177 (1991).
    • (1991) J. Mod. Opt. , vol.38 , pp. 177
    • Courtois, J.Y.1
  • 17
    • 41349117566 scopus 로고    scopus 로고
    • PLEEE8 1063-651X 10.1103/PhysRevE.66.046223
    • D. Gomila and P. Colet, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.66.046223 66, 046223 (2002)
    • (2002) Phys. Rev. e , vol.66 , pp. 046223
    • Gomila, D.1    Colet, P.2
  • 19
    • 0142123095 scopus 로고    scopus 로고
    • SSTEET 0268-1242 10.1088/0268-1242/18/10/301
    • C. Ciuti, Semicond. Sci. Technol. SSTEET 0268-1242 10.1088/0268-1242/18/ 10/301 18, S279 (2003).
    • (2003) Semicond. Sci. Technol. , vol.18 , pp. 279
    • Ciuti, C.1
  • 20
    • 33847336254 scopus 로고    scopus 로고
    • Special issue on the Physics of semiconductors microcavities, edited by B. Deveaud, PSSBBD 0370-1972
    • Special issue on the Physics of semiconductors microcavities, edited by B. Deveaud, Phys. Status Solidi B PSSBBD 0370-1972 242, 2145 (2005), and references therein.
    • (2005) Phys. Status Solidi B , vol.242 , pp. 2145
  • 28
    • 20144380582 scopus 로고    scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.71.115301
    • D. M. Whittaker, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.71.115301 71, 115301 (2005).
    • (2005) Phys. Rev. B , vol.71 , pp. 115301
    • Whittaker, D.M.1
  • 30
    • 19644400811 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.93.166401
    • I. Carusotto and C. Ciuti, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.93.166401 93, 166401 (2004)
    • (2004) Phys. Rev. Lett. , vol.93 , pp. 166401
    • Carusotto, I.1    Ciuti, C.2
  • 31
    • 25144461040 scopus 로고    scopus 로고
    • PSSBBD 0370-1972 10.1002/pssb.200560961
    • C. Ciuti and I. Carusotto, Phys. Status Solidi B PSSBBD 0370-1972 10.1002/pssb.200560961 242, 2224 (2005).
    • (2005) Phys. Status Solidi B , vol.242 , pp. 2224
    • Ciuti, C.1    Carusotto, I.2
  • 32
    • 33847300013 scopus 로고    scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.75.075332
    • M. Wouters and I. Carusotto, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.75.075332 75, 075332 (2007).
    • (2007) Phys. Rev. B , vol.75 , pp. 075332
    • Wouters, M.1    Carusotto, I.2
  • 33
    • 35148812422 scopus 로고    scopus 로고
    • Note that this is not the case in the fully degenerate parametric oscillator considered, e.g., in Ref.: the signal and the idler are in this case emitted into the same discrete mode and no continuous U (1) symmetry is spontaneously broken.
    • Note that this is not the case in the fully degenerate parametric oscillator considered, e.g., in Ref.: the signal and the idler are in this case emitted into the same discrete mode and no continuous U (1) symmetry is spontaneously broken.
  • 37
    • 35148859132 scopus 로고    scopus 로고
    • The damping of sound in Bose gases in the collisional regime has a Im [ω (k)] k2 dependence on a wave vector, which is, however, to be contrasted to the Im [ω (k)] |k| dependence of a Bose-Einstein condensate in the collisionless regime.
    • The damping of sound in Bose gases in the collisional regime has a Im [ω (k)] k2 dependence on a wave vector, which is, however, to be contrasted to the Im [ω (k)] |k| dependence of a Bose-Einstein condensate in the collisionless regime.
  • 38
    • 35148878501 scopus 로고    scopus 로고
    • The eigenvalues of a linear operator L (k) have a Taylor expansion around every value of k, except for some special points where fractional powers 1p can occur (see Ref., p. 65). If the Taylor expansion exists, stability requires Im [ω (k)] <0 for all k, which implies that only even powers of k are allowed in the Taylor expansion of Im [ω (k)] around k=0. If accidentally k=0 is a special point of order p, there are p eigenvalues which have a Puiseux series instead of a Taylor series λh (k) =λ+ α1 e2πihp k1p + α2 e4πihp k2p + for h=0,1,...,p-1. If p=2, stability requires that Im (αm) =0 for any odd m, so that no half-integer powers are allowed in the expansion of Im [λ (ω)]. The case with p>2 is ruled out just because it would be forced to give an eigenvalue with positive imaginary part.
    • The eigenvalues of a linear operator L (k) have a Taylor expansion around every value of k, except for some special points where fractional powers 1p can occur (see Ref., p. 65). If the Taylor expansion exists, stability requires Im [ω (k)] <0 for all k, which implies that only even powers of k are allowed in the Taylor expansion of Im [ω (k)] around k=0. If accidentally k=0 is a special point of order p, there are p eigenvalues which have a Puiseux series instead of a Taylor series λh (k) =λ+ α1 e2πihp k1p + α2 e4πihp k2p + for h=0,1,...,p-1. If p=2, stability requires that Im (αm) =0 for any odd m, so that no half-integer powers are allowed in the expansion of Im [λ (ω)]. The case with p>2 is ruled out just because it would be forced to give an eigenvalue with positive imaginary part.
  • 40
  • 41
    • 33845634369 scopus 로고    scopus 로고
    • PRBMDO 0163-1829 10.1103/PhysRevB.74.245316
    • M. Wouters and I. Carusotto, Phys. Rev. B PRBMDO 0163-1829 10.1103/PhysRevB.74.245316 74, 245316 (2006).
    • (2006) Phys. Rev. B , vol.74 , pp. 245316
    • Wouters, M.1    Carusotto, I.2
  • 42
    • 35148890094 scopus 로고    scopus 로고
    • Note that the beam playing the role of our signal beam was referred to in as the probe beam. We have been forced to choose a different terminology because a probe beam has already appeared in our discussion, i.e., the beam probing the Bogoliubov spectrum.
    • Note that the beam playing the role of our signal beam was referred to in as the probe beam. We have been forced to choose a different terminology because a probe beam has already appeared in our discussion, i.e., the beam probing the Bogoliubov spectrum.
  • 43
    • 35949037212 scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.2.1170
    • V. DeGiorgio and M. O. Scully, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.2.1170 2, 1170 (1970).
    • (1970) Phys. Rev. A , vol.2 , pp. 1170
    • Degiorgio, V.1    Scully, M.O.2
  • 45
    • 41349117977 scopus 로고    scopus 로고
    • PLEEE8 1063-651X 10.1103/PhysRevE.65.035205
    • R. Neubecker and A. Zimmermann, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.65.035205 65, 035205 (R) (2002)
    • (2002) Phys. Rev. e , vol.65 , pp. 035205
    • Neubecker, R.1    Zimmermann, A.2
  • 46
    • 42749102185 scopus 로고    scopus 로고
    • PLEEE8 1063-651X 10.1103/PhysRevE.67.066221
    • R. Neubecker and O. Jakoby, Phys. Rev. E PLEEE8 1063-651X 10.1103/PhysRevE.67.066221 67, 066221 (2003).
    • (2003) Phys. Rev. e , vol.67 , pp. 066221
    • Neubecker, R.1    Jakoby, O.2
  • 47
    • 35148857877 scopus 로고    scopus 로고
    • Rigorously speaking, a simultaneous and opposite rotation of the signal-idler phases without affecting the pump phase requires a boundary to be defined separating them. This can be done without breaking the wave function's continuity in k space only if the polariton population is negligible in between. This is a reasonable assumption if the spot boundaries are smooth and the spot size is σp | ks - kp | -1, i.e., much wider than the wavelength of the interference pattern formed by the signal, pump, and idler fields. In this case, the interference pattern can freely shift through the spot as a consequence of the signal-idler phase rotation and the symmetry breaking restoring force can be generally neglected. The physics is very different in the case of Bénard cells in a box geometry with sharp boundaries, as pointed out in.
    • Rigorously speaking, a simultaneous and opposite rotation of the signal-idler phases without affecting the pump phase requires a boundary to be defined separating them. This can be done without breaking the wave function's continuity in k space only if the polariton population is negligible in between. This is a reasonable assumption if the spot boundaries are smooth and the spot size is σp | ks - kp | -1, i.e., much wider than the wavelength of the interference pattern formed by the signal, pump, and idler fields. In this case, the interference pattern can freely shift through the spot as a consequence of the signal-idler phase rotation and the symmetry breaking restoring force can be generally neglected. The physics is very different in the case of Bénard cells in a box geometry with sharp boundaries, as pointed out in. In this case, the displacement of the roll pattern must be accompanied by a deformation of the cells close to the boundaries, which introduces a significant restoring force and consequently opens a gap in the Bogoliubov spectrum.
  • 49
    • 25344452036 scopus 로고    scopus 로고
    • PYLAAG 0375-9601 10.1016/S0375-9601(97)00666-X
    • L. P. Pitaevskii and S. Stringari, Phys. Lett. A PYLAAG 0375-9601 10.1016/S0375-9601(97)00666-X 235, 398 (1997).
    • (1997) Phys. Lett. A , vol.235 , pp. 398
    • Pitaevskii, L.P.1    Stringari, S.2
  • 51
    • 35148845839 scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.24.1629
    • L. Sneddon, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.24.1629 24, 1629 (1981).
    • (1981) Phys. Rev. A , vol.24 , pp. 1629
    • Sneddon, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.