메뉴 건너뛰기




Volumn 38, Issue 3, 2007, Pages 501-510

Mixed-effect statistics for group analysis in fMRI: A nonparametric maximum likelihood approach

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; CALIBRATION; FUNCTIONAL MAGNETIC RESONANCE IMAGING; HUMAN; LABORATORY DIAGNOSIS; MAXIMUM LIKELIHOOD METHOD; POPULATION RESEARCH; PRIORITY JOURNAL; STATISTICAL ANALYSIS; STUDENT T TEST;

EID: 35048874653     PISSN: 10538119     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2007.06.043     Document Type: Article
Times cited : (25)

References (33)
  • 1
    • 0142042792 scopus 로고    scopus 로고
    • General multi-level linear modelling for group analysis in fMRI
    • Beckmann C., Jenkinson M., and Smith S. General multi-level linear modelling for group analysis in fMRI. NeuroImage 20 (2003) 1052-1063
    • (2003) NeuroImage , vol.20 , pp. 1052-1063
    • Beckmann, C.1    Jenkinson, M.2    Smith, S.3
  • 3
    • 0032587690 scopus 로고    scopus 로고
    • Global, voxel, and cluster tests, by theory and permutation, for difference between two groups of structural MR images of the brain
    • Bullmore E., Suckling J., Overmeyer S., Rabe-Hesketh S., Taylor E., and Brammer M. Global, voxel, and cluster tests, by theory and permutation, for difference between two groups of structural MR images of the brain. IEEE Trans. Med. Imag. 18 (1999) 32-42
    • (1999) IEEE Trans. Med. Imag. , vol.18 , pp. 32-42
    • Bullmore, E.1    Suckling, J.2    Overmeyer, S.3    Rabe-Hesketh, S.4    Taylor, E.5    Brammer, M.6
  • 6
    • 0033243858 scopus 로고    scopus 로고
    • Convergence of a stochastic approximation version of the EM algorithm
    • Delyon B., Lavielle M., and Moulines E. Convergence of a stochastic approximation version of the EM algorithm. Ann. Stat. 27 1 (1999) 94-128
    • (1999) Ann. Stat. , vol.27 , Issue.1 , pp. 94-128
    • Delyon, B.1    Lavielle, M.2    Moulines, E.3
  • 7
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm (with discussion)
    • Dempster A., Laird A., and Rubin D. Maximum likelihood from incomplete data via the em algorithm (with discussion). J. R. Stat. Soc., Ser. B Stat. Methodol. 39 (1977) 1-38
    • (1977) J. R. Stat. Soc., Ser. B Stat. Methodol. , vol.39 , pp. 1-38
    • Dempster, A.1    Laird, A.2    Rubin, D.3
  • 13
    • 0347626247 scopus 로고    scopus 로고
    • Validating cluster size inference: random field and permutation methods
    • Hayasaka S., and Nichols T. Validating cluster size inference: random field and permutation methods. NeuroImage 20 4 (2003) 2343-2356
    • (2003) NeuroImage , vol.20 , Issue.4 , pp. 2343-2356
    • Hayasaka, S.1    Nichols, T.2
  • 14
    • 21944448369 scopus 로고    scopus 로고
    • Holmes A., and Friston K. Generalisability, Random Effects and Population Inference. NeuroImage vol. 7 (1998) S754
    • (1998) NeuroImage , vol.7
    • Holmes, A.1    Friston, K.2
  • 15
    • 0030032744 scopus 로고    scopus 로고
    • Nonparametric analysis of statistic images from functional mapping experiments
    • Holmes A., Blair R., Watson J., and Ford I. Nonparametric analysis of statistic images from functional mapping experiments. J. Cereb. Blood Flow Metab. 16 (1996) 7-22
    • (1996) J. Cereb. Blood Flow Metab. , vol.16 , pp. 7-22
    • Holmes, A.1    Blair, R.2    Watson, J.3    Ford, I.4
  • 16
    • 0000525359 scopus 로고
    • The ge.ometry of mixture likelihoods: a general theory
    • Lindsay B.G. The ge.ometry of mixture likelihoods: a general theory. Ann. Stat. 11 1 (1983) 86-94
    • (1983) Ann. Stat. , vol.11 , Issue.1 , pp. 86-94
    • Lindsay, B.G.1
  • 17
    • 0030329265 scopus 로고    scopus 로고
    • A smooth nonparametric estimate of a mixing distribution using mixtures of Gaussians
    • Magder L.S., and Zeger S.L. A smooth nonparametric estimate of a mixing distribution using mixtures of Gaussians. J. Am. Stat. Assoc. 91 435 (1996) 1141-1151
    • (1996) J. Am. Stat. Assoc. , vol.91 , Issue.435 , pp. 1141-1151
    • Magder, L.S.1    Zeger, S.L.2
  • 18
    • 0000251971 scopus 로고
    • Maximum likelihood via the ECM algorithm: a general framework
    • Meng X.L., and Rubin D.B. Maximum likelihood via the ECM algorithm: a general framework. Biometrika 80 (1993) 267-278
    • (1993) Biometrika , vol.80 , pp. 267-278
    • Meng, X.L.1    Rubin, D.B.2
  • 20
    • 33646859908 scopus 로고    scopus 로고
    • Combined permutation test and mixed-effect model for group average analysis in fMRI
    • Mériaux S., Roche A., Dehaene-Lambertz G., Thirion B., and Poline J.-B. Combined permutation test and mixed-effect model for group average analysis in fMRI. Hum. Brain Mapp. 27 5 (2006) 402-410
    • (2006) Hum. Brain Mapp. , vol.27 , Issue.5 , pp. 402-410
    • Mériaux, S.1    Roche, A.2    Dehaene-Lambertz, G.3    Thirion, B.4    Poline, J.-B.5
  • 22
    • 0142010692 scopus 로고    scopus 로고
    • Bayesian second-level analysis of functional magnetic resonance images
    • Neumann J., and Lohmann G. Bayesian second-level analysis of functional magnetic resonance images. NeuroImage 20 2 (2003) 1346-1355
    • (2003) NeuroImage , vol.20 , Issue.2 , pp. 1346-1355
    • Neumann, J.1    Lohmann, G.2
  • 23
    • 0242721216 scopus 로고    scopus 로고
    • Controlling the family-wise error rate in functional neuroimaging: a comparative review
    • Nichols T., and Hayasaka S. Controlling the family-wise error rate in functional neuroimaging: a comparative review. Stat. Methods Med. Res. 12 5 (2003) 419-446
    • (2003) Stat. Methods Med. Res. , vol.12 , Issue.5 , pp. 419-446
    • Nichols, T.1    Hayasaka, S.2
  • 24
    • 0036136472 scopus 로고    scopus 로고
    • Nonparametric permutation tests for functional neuroimaging: a primer with examples
    • Nichols T., and Holmes A. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum. Brain Mapp. 15 (2002) 1-25
    • (2002) Hum. Brain Mapp. , vol.15 , pp. 1-25
    • Nichols, T.1    Holmes, A.2
  • 26
    • 33646861200 scopus 로고    scopus 로고
    • Motivation and synthesis of the FIAC experiment: reproducibility of fMRI results across expert analyses
    • Poline J.-B., Strother S.C., Dehaene-Lambertz G., Egan G.F., and Lancaster J.L. Motivation and synthesis of the FIAC experiment: reproducibility of fMRI results across expert analyses. Hum. Brain Mapp. 27 5 (2006) 351-359
    • (2006) Hum. Brain Mapp. , vol.27 , Issue.5 , pp. 351-359
    • Poline, J.-B.1    Strother, S.C.2    Dehaene-Lambertz, G.3    Egan, G.F.4    Lancaster, J.L.5
  • 27
    • 34147173367 scopus 로고    scopus 로고
    • Rank-order versus mean based statistics for neuroimaging
    • Rorden C., Bonilha L., and Nichols T.E.E. Rank-order versus mean based statistics for neuroimaging. NeuroImage 35 4 (2007) 1531-1537
    • (2007) NeuroImage , vol.35 , Issue.4 , pp. 1531-1537
    • Rorden, C.1    Bonilha, L.2    Nichols, T.E.E.3
  • 29
    • 33746835024 scopus 로고    scopus 로고
    • Dealing with the shortcomings of spatial normalization: multi-subject parcellation of fMRI datasets
    • Thirion B., Flandin G., Pinel P., Roche A., Ciuciu P., and Poline J.-B. Dealing with the shortcomings of spatial normalization: multi-subject parcellation of fMRI datasets. Hum. Brain Mapp. 27 8 (2006) 678-693
    • (2006) Hum. Brain Mapp. , vol.27 , Issue.8 , pp. 678-693
    • Thirion, B.1    Flandin, G.2    Pinel, P.3    Roche, A.4    Ciuciu, P.5    Poline, J.-B.6
  • 30
    • 18044389102 scopus 로고    scopus 로고
    • Increased sensitivity in neuroimaging analyses using robust regression
    • Wager T., Keller M., Lacey S., and Jonides J. Increased sensitivity in neuroimaging analyses using robust regression. NeuroImage 26 1 (2005) 99-113
    • (2005) NeuroImage , vol.26 , Issue.1 , pp. 99-113
    • Wager, T.1    Keller, M.2    Lacey, S.3    Jonides, J.4
  • 31
    • 1842452778 scopus 로고    scopus 로고
    • Multi-level linear modelling for fMRI group analysis using Bayesian inference
    • Woolrich M., Behrens T., Beckmann C., Jenkinson M., and Smith S. Multi-level linear modelling for fMRI group analysis using Bayesian inference. NeuroImage 21 4 (2004) 1732-1747
    • (2004) NeuroImage , vol.21 , Issue.4 , pp. 1732-1747
    • Woolrich, M.1    Behrens, T.2    Beckmann, C.3    Jenkinson, M.4    Smith, S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.