-
1
-
-
0030211964
-
Bagging predictors
-
Breiman, L.: Bagging predictors. Machine Learning 24 (1996) 123-140
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
2
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization
-
Dietterich, T.: An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization. Machine Learning 40 (2000) 139-158
-
(2000)
Machine Learning
, vol.40
, pp. 139-158
-
-
Dietterich, T.1
-
4
-
-
26944501740
-
Bias-variance analysis of Support Vector Machines for the development of SVM-based ensemble methods
-
accepted for publication
-
Valentini, G., Dietterich, T.G.: Bias-variance analysis of Support Vector Machines for the development of SVM-based ensemble methods. Journal of Machine Learning Research (accepted for publication)
-
Journal of Machine Learning Research
-
-
Valentini, G.1
Dietterich, T.G.2
-
5
-
-
84947560298
-
Bias-variance analysis and ensembles of SVM
-
MCS2002, Cagliari, Italy. Springer-Verlag
-
Valentini, G., Dietterich, T.: Bias-variance analysis and ensembles of SVM. In: MCS2002, Cagliari, Italy. Vol. 2364 of Lecture Notes in Computer Science., Springer-Verlag (2002) 222-231
-
(2002)
Lecture Notes in Computer Science
, vol.2364
, pp. 222-231
-
-
Valentini, G.1
Dietterich, T.2
-
6
-
-
0034869307
-
Optimal artificial neural network architecture selection for voting
-
Andersen, T., Rimer, M., Martinez, T.R.: Optimal artificial neural network architecture selection for voting. In: Proc. of the IEEE International Joint Conference on Neural Networks IJCNN'Ol, IEEE (2001) 790-795
-
(2001)
Proc. of the IEEE International Joint Conference on Neural Networks IJCNN'Ol, IEEE
, pp. 790-795
-
-
Andersen, T.1
Rimer, M.2
Martinez, T.R.3
-
7
-
-
1942418086
-
Pattern Classification Using Support Vector Machine Ensemble
-
IEEE
-
Kim, H., Pang, S., Je, H., Kim, D., Bang, S.: Pattern Classification Using Support Vector Machine Ensemble. In: Proc. of ICPR'02. Vol. 2., IEEE (2002) 20160-20163
-
(2002)
Proc. of ICPR'02.
, vol.2
, pp. 20160-20163
-
-
Kim, H.1
Pang, S.2
Je, H.3
Kim, D.4
Bang, S.5
-
8
-
-
0032634129
-
Pasting Small Votes for Classification in Large Databases and On-Line
-
Breiman, L.: Pasting Small Votes for Classification in Large Databases and On-Line. Machine Learning 36 (1999) 85-103
-
(1999)
Machine Learning
, vol.36
, pp. 85-103
-
-
Breiman, L.1
-
9
-
-
0002714543
-
Making large scale SVM learning practical
-
Scholkopf B., Burges C., S.A., ed.: MIT Press, Cambridge, MA
-
Joachims, T.: Making large scale SVM learning practical. In Scholkopf B., Burges C., S.A., ed.: Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge, MA (1999) 169-184
-
(1999)
Advances in Kernel Methods - Support Vector Learning
, pp. 169-184
-
-
Joachims, T.1
-
10
-
-
84947592660
-
Distributed pasting of small votes
-
MCS2002, Cagliari, Italy. Springer-Verlag
-
Chawla, N., Hall, L., Bowyer, K., Moore, T., Kegelmeyer, W.: Distributed pasting of small votes. In: MCS2002, Cagliari, Italy. Vol. 2364 of Lecture Notes in Computer Science., Springer-Verlag (2002) 52-61
-
(2002)
Lecture Notes in Computer Science.
, vol.2364
, pp. 52-61
-
-
Chawla, N.1
Hall, L.2
Bowyer, K.3
Moore, T.4
Kegelmeyer, W.5
-
11
-
-
29144512925
-
-
PhD thesis, DISI, Università di Genova, Italy ftp://ftp.disi. unige.it/person/ValentiniG/Tesi/finalversion/vale-th-2003-04.pdf
-
Valentini, G.: Ensemble methods based on bias-variance analysis. PhD thesis, DISI, Università di Genova, Italy (2003), ftp://ftp.disi.unige. it/person/ValentiniG/Tesi/finalversion/vale-th-2003-04.pdf.
-
(2003)
Ensemble Methods Based on Bias-variance Analysis
-
-
Valentini, G.1
-
13
-
-
0036825897
-
NEURObjects: An object-oriented library for neural network development
-
Valentini, G., Masulli, F.: NEURObjects: an object-oriented library for neural network development. Neurocomputing 48 (2002) 623-646
-
(2002)
Neurocomputing
, vol.48
, pp. 623-646
-
-
Valentini, G.1
Masulli, F.2
-
15
-
-
29144497447
-
Bounds on the Generalization Performance of Kernel Machine Ensembles
-
Langley, P., ed.: Morgan Kaufmann
-
Evgeniou, T., Perez-Breva, L., Pontil, M., Poggio, T.: Bounds on the Generalization Performance of Kernel Machine Ensembles. In Langley, P., ed.: Proc. of the Seventeenth International Conference on Machine Learning (ICML 2000), Morgan Kaufmann (2000) 271-278
-
(2000)
Proc. of the Seventeenth International Conference on Machine Learning (ICML 2000)
, pp. 271-278
-
-
Evgeniou, T.1
Perez-Breva, L.2
Pontil, M.3
Poggio, T.4
|