메뉴 건너뛰기




Volumn 3202, Issue , 2004, Pages 410-421

Combining winnow and orthogonal sparse bigrams for incremental spam filtering

Author keywords

Bigrams; Classification; Email; Feature Generation; Feature Representation; Incremental Learning; Online Learning; Orthogonal Sparse Bigrams; Spam Filtering; Text Classification; Winnow

Indexed keywords

CLASSIFICATION (OF INFORMATION); ELECTRONIC MAIL; INTERNET;

EID: 35048865513     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-30116-5_38     Document Type: Article
Times cited : (50)

References (16)
  • 2
    • 0001345686 scopus 로고    scopus 로고
    • Context-sensitive learning methods for text categorization
    • W. W. Cohen and Y. Singer. Context-sensitive learning methods for text categorization. ACM Transactions on Information Systems, 17(2):141-173, 1999.
    • (1999) ACM Transactions on Information Systems , vol.17 , Issue.2 , pp. 141-173
    • Cohen, W.W.1    Singer, Y.2
  • 4
    • 78049288875 scopus 로고    scopus 로고
    • Mistake-driven learning in text categorization
    • I. Dagan, Y. Karov, and D. Roth. Mistake-driven learning in text categorization. In EMNLP-97, 1997.
    • (1997) EMNLP-97
    • Dagan, I.1    Karov, Y.2    Roth, D.3
  • 5
    • 35048853604 scopus 로고    scopus 로고
    • Evaluating cost-sensitive unsolicited bulk email categorization
    • Madrid, ES
    • J. M. Gómez Hidalgo, E. Puertas Sanz, and M. J. Maña López. Evaluating cost-sensitive unsolicited bulk email categorization. In JADT-02, Madrid, ES, 2002.
    • (2002) JADT-02
    • Gómez Hidalgo, J.M.1    Puertas Sanz, E.2    Maña López, M.J.3
  • 7
    • 34250091945 scopus 로고
    • Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm
    • N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Machine Learning, 2:285-318, 1988.
    • (1988) Machine Learning , vol.2 , pp. 285-318
    • Littlestone, N.1
  • 8
    • 0013157604 scopus 로고    scopus 로고
    • Technical Report UIUCDCS-R-99-2087, Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois
    • M. Munoz, V. Punyakanok, D. Roth, and D. Zimak. A learning approach to shallow parsing. Technical Report UIUCDCS-R-99-2087, Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, 1999.
    • (1999) A Learning Approach to Shallow Parsing
    • Munoz, M.1    Punyakanok, V.2    Roth, D.3    Zimak, D.4
  • 11
    • 35048877137 scopus 로고    scopus 로고
    • SpamAssassin. http://www.spamassassin.org/.
  • 12
    • 35048825328 scopus 로고    scopus 로고
    • SpamBayes
    • SpamBayes. http://spambayes.sourceforge.net/.
  • 14
    • 11244335124 scopus 로고    scopus 로고
    • Sparse binary polynomial hashing and the CRM114 discriminator
    • Cambridge, MA, MIT
    • W. S. Yerazunis. Sparse binary polynomial hashing and the CRM114 discriminator. In 2003 Spam Conference, Cambridge, MA, 2003. MIT.
    • (2003) 2003 Spam Conference
    • Yerazunis, W.S.1
  • 15
    • 19544383734 scopus 로고    scopus 로고
    • The spam-filtering accuracy plateau at 99.9% accuracy and how to get past it
    • Cambridge, MA, MIT
    • W. S. Yerazunis. The spam-filtering accuracy plateau at 99.9% accuracy and how to get past it. In 2004 Spam Conference, Cambridge, MA, 2004. MIT.
    • (2004) 2004 Spam Conference
    • Yerazunis, W.S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.