-
2
-
-
3042848954
-
-
P. L. Adams, M. R. Stahley, A. B. Kosek, J. Wang, S. A. Strobel, Nature 2004, 430, 45-50.
-
(2004)
Nature
, vol.430
, pp. 45-50
-
-
Adams, P.L.1
Stahley, M.R.2
Kosek, A.B.3
Wang, J.4
Strobel, S.A.5
-
6
-
-
0032213918
-
-
F. Huang, Z. Yang, M. Yarus, Chem. Biol. 1998, 5, 669-678.
-
(1998)
Chem. Biol
, vol.5
, pp. 669-678
-
-
Huang, F.1
Yang, Z.2
Yarus, M.3
-
7
-
-
0034696594
-
-
a) Y. Li, Y. Liu, R. R. Breaker, Biochemistry 2000, 39, 3106-3114;
-
(2000)
Biochemistry
, vol.39
, pp. 3106-3114
-
-
Li, Y.1
Liu, Y.2
Breaker, R.R.3
-
9
-
-
0036235747
-
-
c) W. Wang, L. P. Billen, Y. Li, Chem. Biol. 2002, 9, 507-517.
-
(2002)
Chem. Biol
, vol.9
, pp. 507-517
-
-
Wang, W.1
Billen, L.P.2
Li, Y.3
-
13
-
-
33644688620
-
-
E. Zelin, Y. Wang, S. K. Silverman, Biochemistry 2006, 45, 2767-2771.
-
(2006)
Biochemistry
, vol.45
, pp. 2767-2771
-
-
Zelin, E.1
Wang, Y.2
Silverman, S.K.3
-
15
-
-
35048880861
-
-
Δ cofactor.
-
Δ cofactor.
-
-
-
-
16
-
-
35048865210
-
-
See the Supporting Information for all data that is not shown in the figures
-
See the Supporting Information for all data that is not shown in the figures.
-
-
-
-
17
-
-
35048885923
-
-
This trend was reported for 7S11 by using 5′-adenylated substrates,[9] and a similar trend is observed with 10DM24 see the Supporting Information
-
[9] and a similar trend is observed with 10DM24 (see the Supporting Information).
-
-
-
-
18
-
-
35048849324
-
-
For practical reasons, these experiments were performed with the 2′-deoxy-NTPs (i.e., dATP and d2AP-TP, where 2AP is 2-aminopurine). Because dATP is almost as efficient a substrate as ATP (see below), the 2′-deoxy modification of d2AP-TP is not responsible for its poor reactivity as a substrate relative to dATP.
-
For practical reasons, these experiments were performed with the 2′-deoxy-NTPs (i.e., dATP and d2AP-TP, where 2AP is 2-aminopurine). Because dATP is almost as efficient a substrate as ATP (see below), the 2′-deoxy modification of d2AP-TP is not responsible for its poor reactivity as a substrate relative to dATP.
-
-
-
-
19
-
-
35048854935
-
-
The identity of the second base pair could in principle influence the NTP binding affinity through stacking or other effects
-
The identity of the second base pair could in principle influence the NTP binding affinity through stacking or other effects.
-
-
-
-
20
-
-
35048868742
-
-
A modest amount of ligation activity was observed when GTP or ITP was used along with A in the deoxyribozyme see the Supporting Information, This indicates that non-Watson-Crick interactions between the NTP substrate and deoxyribozyme are possible, albeit much less productive than Watson-Crick interactions
-
A modest amount of ligation activity was observed when GTP or ITP was used along with A in the deoxyribozyme (see the Supporting Information). This indicates that non-Watson-Crick interactions between the NTP substrate and deoxyribozyme are possible, albeit much less productive than Watson-Crick interactions.
-
-
-
-
21
-
-
9244225713
-
-
a) R. T. Batey, S. D. Gilbert, R. K. Montange, Nature 2004, 432, 411-415;
-
(2004)
Nature
, vol.432
, pp. 411-415
-
-
Batey, R.T.1
Gilbert, S.D.2
Montange, R.K.3
-
22
-
-
10644250950
-
-
b) A. Serganov, Y. R. Yuan, O. Pikovskaya, A. Polonskaia, L. Malinina, A. T. Phan, C. Höbartner, R. Micura, R. R. Breaker, D. J. Patel, Chem. Biol. 2004, 11, 1729-1741.
-
(2004)
Chem. Biol
, vol.11
, pp. 1729-1741
-
-
Serganov, A.1
Yuan, Y.R.2
Pikovskaya, O.3
Polonskaia, A.4
Malinina, L.5
Phan, A.T.6
Höbartner, C.7
Micura, R.8
Breaker, R.R.9
Patel, D.J.10
-
23
-
-
34247181095
-
-
A. Roth, W. C. Winkler, E. E. Regulski, B. W. Lee, J. Lim, I. Jona, J. E. Barrick, A. Ritwik, J. N. Kim, R. Welz, D. Iwata-Reuyl, R. R. Breaker, Nat. Struct. Mol. Biol. 2007, 14, 308-317.
-
(2007)
Nat. Struct. Mol. Biol
, vol.14
, pp. 308-317
-
-
Roth, A.1
Winkler, W.C.2
Regulski, E.E.3
Lee, B.W.4
Lim, J.5
Jona, I.6
Barrick, J.E.7
Ritwik, A.8
Kim, J.N.9
Welz, R.10
Iwata-Reuyl, D.11
Breaker, R.R.12
-
24
-
-
1642586299
-
-
W. C. Winkler, A. Nahvi, A. Roth, J. A. Collins, R. R. Breaker, Nature 2004, 428, 281-286.
-
(2004)
Nature
, vol.428
, pp. 281-286
-
-
Winkler, W.C.1
Nahvi, A.2
Roth, A.3
Collins, J.A.4
Breaker, R.R.5
-
25
-
-
35048862705
-
-
4 as described in the Supporting Information.
-
4 as described in the Supporting Information.
-
-
-
-
26
-
-
35048893217
-
-
acvTP was synthesized from guanine in four steps as described in the Supporting Information.
-
acvTP was synthesized from guanine in four steps as described in the Supporting Information.
-
-
-
-
27
-
-
0037420377
-
-
A. Flynn-Charlebois, Y. Wang, T. K. Prior, I. Rashid, K. A. Hoadley, R. L. Coppins, A. C. Wolf, S. K. Silverman, J. Am. Chem. Soc. 2003, 125, 1444-1454.
-
(2003)
J. Am. Chem. Soc
, vol.125
, pp. 1444-1454
-
-
Flynn-Charlebois, A.1
Wang, Y.2
Prior, T.K.3
Rashid, I.4
Hoadley, K.A.5
Coppins, R.L.6
Wolf, A.C.7
Silverman, S.K.8
-
28
-
-
35048846436
-
-
Use of dGTP in place of GTP led to a similar amount of the A-G product but no detectable A-GG product. One interpretation is that the template-synthesized GG dinucleotide is 2′-5′-linked. Alternatively, the GTP 2′-OH group could be required for templated synthesis of a 3′-5′-linked GG dinucleotide. These two possibilities cannot be distinguished on the basis of the available data
-
Use of dGTP in place of GTP led to a similar amount of the A-G product but no detectable A-GG product. One interpretation is that the template-synthesized GG dinucleotide is 2′-5′-linked. Alternatively, the GTP 2′-OH group could be required for templated synthesis of a 3′-5′-linked GG dinucleotide. These two possibilities cannot be distinguished on the basis of the available data.
-
-
-
-
29
-
-
0019274775
-
-
[26]
-
[26]
-
-
-
-
31
-
-
35048865692
-
-
For a related strategy, see
-
For a related strategy, see: D. A. Baum, S. K. Silverman, Angew. Chem. 2007, 119, 3572-3574;
-
(2007)
Angew. Chem
, vol.119
, pp. 3572-3574
-
-
Baum, D.A.1
Silverman, S.K.2
-
32
-
-
34250809072
-
-
Angew. Chem. Int. Ed. 2007, 46, 3502-3504.
-
(2007)
Chem. Int. Ed
, vol.46
, pp. 3502-3504
-
-
Angew1
|