메뉴 건너뛰기




Volumn 18, Issue 2, 2007, Pages 150-162

Segmentation of self-organizing maps with 3-D output grids;Segmentação de mapas auto-organizáveis com espaço de saída 3-D

Author keywords

Data clustering; Data mining; Neural networks; Self organizing maps; Volume segmentation

Indexed keywords

DATA MINING; IMAGE SEGMENTATION; THREE DIMENSIONAL; TOPOLOGY;

EID: 35048816963     PISSN: 01031759     EISSN: None     Source Type: Journal    
DOI: 10.1590/s0103-17592007000200002     Document Type: Article
Times cited : (8)

References (29)
  • 1
    • 0032784636 scopus 로고    scopus 로고
    • Neural maps and topographic vector quantization
    • Bauer, H.-U., Herrmann, M., & Villmann, T. (1999). Neural maps and topographic vector quantization. Neural Networks, v. 12, [4-5], pp. 659-676.
    • (1999) Neural Networks , vol.12 , Issue.4-5 , pp. 659-676
    • Bauer, H.-U.1    Herrmann, M.2    Villmann, T.3
  • 5
    • 0033147369 scopus 로고    scopus 로고
    • Estimating the Number of Clusters in Multivariate Data by Self-Organizing Maps
    • Costa, J.A.F. and Netto, M.L.A. (1999a). Estimating the Number of Clusters in Multivariate Data by Self-Organizing Maps. Intl. Journal of Neural Systems, vol. 9, pp. 195-202.
    • (1999) Intl. Journal of Neural Systems , vol.9 , pp. 195-202
    • Costa, J.A.F.1    Netto, M.L.A.2
  • 6
    • 18744432741 scopus 로고    scopus 로고
    • Cluster Analysis Using Self-Organizing Maps and Image Processing Techniques
    • Tokyo, Japan
    • Costa, J.A.F., & Netto, M. L. A. (1999b). Cluster Analysis Using Self-Organizing Maps and Image Processing Techniques. In: Proc. of the IEEE Conf. on Systems, Man, and Cybernetics, v. 5, pp. 367-372, Tokyo, Japan.
    • (1999) Proc. of the IEEE Conf. on Systems, Man, and Cybernetics , vol.5 , pp. 367-372
    • Costa, J.A.F.1    Netto, M.L.A.2
  • 7
  • 8
    • 0034945862 scopus 로고    scopus 로고
    • Clustering of complex shaped data sets via Kohonen maps and mathematical morphology
    • Costa, J.A.F., and Netto, M. L. A. (2001b). Clustering of complex shaped data sets via Kohonen maps and mathematical morphology. Proceedings of the SPIE, vol. 4384, pp. 16-27.
    • (2001) Proceedings of the SPIE , vol.4384 , pp. 16-27
    • Costa, J.A.F.1    Netto, M.L.A.2
  • 11
    • 84858363752 scopus 로고    scopus 로고
    • Costa, J.A.F. (2005). Segmentação do SOM por Métodos de Agrupamentos Hierárquicos com Conectividade Restrita. VII Congresso Brasileiro de Redes Neurais, Natal, RN, outubro de 2005.
    • Costa, J.A.F. (2005). Segmentação do SOM por Métodos de Agrupamentos Hierárquicos com Conectividade Restrita. VII Congresso Brasileiro de Redes Neurais, Natal, RN, outubro de 2005.
  • 13
    • 0000171332 scopus 로고    scopus 로고
    • Limitations of Self-organizing Maps for Vector Quantization and Multidimensional Scaling
    • Mozer M.C, et al.eds, MIT Press, pp
    • Flexer, A. (1997). Limitations of Self-organizing Maps for Vector Quantization and Multidimensional Scaling, in Mozer M.C., et al.(eds.), Advances in Neural Information Processing Systems 9, MIT Press, pp. 445-451.
    • (1997) Advances in Neural Information Processing Systems 9 , pp. 445-451
    • Flexer, A.1
  • 15
    • 40649091400 scopus 로고    scopus 로고
    • Data Clustering using Self-Organizing Maps segmented by Mathematic Morphology and Simplified Cluster Validity Indexes: An application in remotely sensed image
    • Vancouver, BC, Canada. Accepted
    • Gonçalves, M., Netto, M., Costa, J.A.F., and Zullo, J. (2006). Data Clustering using Self-Organizing Maps segmented by Mathematic Morphology and Simplified Cluster Validity Indexes: an application in remotely sensed image. In: 2006 IEEE International Joint Conference on Neural Networks, Vancouver, BC, Canada. Accepted.
    • (2006) 2006 IEEE International Joint Conference on Neural Networks
    • Gonçalves, M.1    Netto, M.2    Costa, J.A.F.3    Zullo, J.4
  • 17
  • 19
    • 0002855504 scopus 로고    scopus 로고
    • The Ordered Queue and the Optimality of the Watershed Approaches
    • Boston, MA: Kluwer. June
    • Lotufo, R. and Falcao, A. (2000). The Ordered Queue and the Optimality of the Watershed Approaches, in: Computational Imaging and Vision, vol. 18. Boston, MA: Kluwer. June.
    • (2000) Computational Imaging and Vision , vol.18
    • Lotufo, R.1    Falcao, A.2
  • 21
    • 0005983330 scopus 로고    scopus 로고
    • Clustering massive data sets
    • J. Abello et al, Eds, Kluwer
    • Murtagh, F. (2000). Clustering massive data sets, in J. Abello et al. (Eds.), Handbook of Massive Data Sets, Kluwer.
    • (2000) Handbook of Massive Data Sets
    • Murtagh, F.1
  • 22
    • 84887006810 scopus 로고
    • A Non-Linear Mapping for Data Structure Analysis
    • Sammon, J. W. (1969). A Non-Linear Mapping for Data Structure Analysis. IEEE Trans. in Computers, v. 18, pp. 401-409.
    • (1969) IEEE Trans. in Computers , vol.18 , pp. 401-409
    • Sammon, J.W.1
  • 23
    • 34250926052 scopus 로고
    • The analysis of proximity: Multidimensional scaling with an unknown distance function I
    • Shepard, N. R. (1962). The analysis of proximity: multidimensional scaling with an unknown distance function I. Psychometrika, v.27, 125-139.
    • (1962) Psychometrika , vol.27 , pp. 125-139
    • Shepard, N.R.1
  • 26
    • 84950351930 scopus 로고
    • Multidimensional Scaling I. Theory and Method
    • Torgerson, W. S. (1952). Multidimensional Scaling I. Theory and Method. Psychometrika, vol. 17, pp. 401-419.
    • (1952) Psychometrika , vol.17 , pp. 401-419
    • Torgerson, W.S.1
  • 27
    • 0002535204 scopus 로고
    • Self-Organizing Neural Networks for Visualization and Classification
    • O. Opitz et al, Eds, Springer, Berlin, pp
    • Ultsch, A. (1993). Self-Organizing Neural Networks for Visualization and Classification. In: O. Opitz et al. (Eds). Information and Classification. Springer, Berlin, pp. 307-313.
    • (1993) Information and Classification , pp. 307-313
    • Ultsch, A.1
  • 28
    • 26244445887 scopus 로고
    • Self-Organizing Neural Networks perform different from statistical k-means clustering
    • Basel
    • Ultsch, A. (1995). Self-Organizing Neural Networks perform different from statistical k-means clustering. Gesellschaft für Klassifikation, Basel.
    • (1995) Gesellschaft für Klassifikation
    • Ultsch, A.1
  • 29
    • 0034187784 scopus 로고    scopus 로고
    • Clustering of the Self-Organizing Map
    • Vesanto, J. and Alhoniemi, E. (2000). Clustering of the Self-Organizing Map, IEEE Trans. on Neural Netwoks, v. 11, (3), pp. 586-602.
    • (2000) IEEE Trans. on Neural Netwoks , vol.11 , Issue.3 , pp. 586-602
    • Vesanto, J.1    Alhoniemi, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.