-
1
-
-
0034733502
-
-
C. Boonlaksiri, W. Oonanant, P. Kongsaeree, P. Kittakoop, M. Tanticharoen, Y. Thebtaranonth, Phytochemistry 2000, 54, 415-417.
-
(2000)
Phytochemistry
, vol.54
, pp. 415-417
-
-
Boonlaksiri, C.1
Oonanant, W.2
Kongsaeree, P.3
Kittakoop, P.4
Tanticharoen, M.5
Thebtaranonth, Y.6
-
2
-
-
0027435263
-
-
C.-C. Chen, Y.-L. Huang, J.-C. Ou, J. Nat. Prod. 1993, 56, 1594-1597.
-
(1993)
J. Nat. Prod
, vol.56
, pp. 1594-1597
-
-
Chen, C.-C.1
Huang, Y.-L.2
Ou, J.-C.3
-
3
-
-
0036911137
-
-
E. H. Hakim, Asnizar, Yurnawilis, N. Aimi, M. Kitajima, H. Takayama, Fitoterapia 2002, 73, 668-673.
-
(2002)
Fitoterapia
, vol.73
, pp. 668-673
-
-
Hakim, E.H.1
Asnizar, Y.2
Aimi, N.3
Kitajima, M.4
Takayama, H.5
-
4
-
-
0025974361
-
-
M. R. Fernando, S. M. D. Nalinie Wickramasinghe, M. I. Thabrew, P. L. Ariyananda, E. H. Karunanayake, J. Ethnopharmacol. 1991, 31, 277-282.
-
(1991)
J. Ethnopharmacol
, vol.31
, pp. 277-282
-
-
Fernando, M.R.1
Nalinie Wickramasinghe, S.M.D.2
Thabrew, M.I.3
Ariyananda, P.L.4
Karunanayake, E.H.5
-
5
-
-
2542589428
-
-
Y. H. Wang, A. J. Hou, L. Chen, D. F. Chen, H. D. Sun, Q. S. Zhao, K. F. Bastow, Y. Nakanish, X. H. Wang, K. H. Lee, J. Nat. Prod. 2004, 67, 757-761.
-
(2004)
J. Nat. Prod
, vol.67
, pp. 757-761
-
-
Wang, Y.H.1
Hou, A.J.2
Chen, L.3
Chen, D.F.4
Sun, H.D.5
Zhao, Q.S.6
Bastow, K.F.7
Nakanish, Y.8
Wang, X.H.9
Lee, K.H.10
-
6
-
-
33746580374
-
-
Y. H. Wang, A. J. Hou, D. F. Chen, M. Weiller, A. Wendel, R. J. Staples, Eur. J. Org. Chem. 2006, 3457-3463.
-
(2006)
Eur. J. Org. Chem
, pp. 3457-3463
-
-
Wang, Y.H.1
Hou, A.J.2
Chen, D.F.3
Weiller, M.4
Wendel, A.5
Staples, R.J.6
-
7
-
-
37049102319
-
-
For another notable example of racemic natural products, see the endiandric acids: isolation: a
-
For another notable example of racemic natural products, see the endiandric acids: isolation: a) W. M. Bandaranayake, J. E. Banfield, D. St. C. Black, J. Chem. Soc. Chem. Commun. 1980, 19, 902-903;
-
(1980)
J. Chem. Soc. Chem. Commun
, vol.19
, pp. 902-903
-
-
Bandaranayake, W.M.1
Banfield, J.E.2
Black, D.S.C.3
-
8
-
-
0000454836
-
-
total synthesis: b K. C. Nicolaou, N. A. Petasis, R. E. Zipkin, J. Uenishi, J. Am. Chem. Soc. 1982, 104, 5555-5557;
-
total synthesis: b) K. C. Nicolaou, N. A. Petasis, R. E. Zipkin, J. Uenishi, J. Am. Chem. Soc. 1982, 104, 5555-5557;
-
-
-
-
9
-
-
0000454836
-
-
c) K. C. Nicolaou, N. A. Petasis, J. Uenishi, R. E. Zipkin, J. Am. Chem. Soc. 1982, 104, 5557-5558;
-
(1982)
J. Am. Chem. Soc
, vol.104
, pp. 5557-5558
-
-
Nicolaou, K.C.1
Petasis, N.A.2
Uenishi, J.3
Zipkin, R.E.4
-
10
-
-
0000510718
-
-
d) K. C. Nicolaou, R. E. Zipkin, N. A. Petasis, J. Am. Chem. Soc. 1982, 104, 5558-5560;
-
(1982)
J. Am. Chem. Soc
, vol.104
, pp. 5558-5560
-
-
Nicolaou, K.C.1
Zipkin, R.E.2
Petasis, N.A.3
-
11
-
-
0001225884
-
-
e) K. C. Nicolaou, N. A. Petasis, R. E. Zipkin, J. Am. Chem. Soc. 1982, 104, 5560-5562.
-
(1982)
J. Am. Chem. Soc
, vol.104
, pp. 5560-5562
-
-
Nicolaou, K.C.1
Petasis, N.A.2
Zipkin, R.E.3
-
12
-
-
33947206729
-
-
For related cyclobutane-forming reactions that involve a benzopyran and a prenyl group, see: a
-
For related cyclobutane-forming reactions that involve a benzopyran and a prenyl group, see: a) M. Mondal, V. G. Puranik, N. P. Argade, J. Org. Chem. 2007, 72, 2068-2076;
-
(2007)
J. Org. Chem
, vol.72
, pp. 2068-2076
-
-
Mondal, M.1
Puranik, V.G.2
Argade, N.P.3
-
13
-
-
33646563471
-
-
for a related formal [2+2] cycloaddition reaction that involves an allylic cation and a benzopyran, see: b A. V. Kurdyumov, R. P. Hsung, J. Am. Chem. Soc. 2006, 128, 6272-6273;
-
for a related formal [2+2] cycloaddition reaction that involves an allylic cation and a benzopyran, see: b) A. V. Kurdyumov, R. P. Hsung, J. Am. Chem. Soc. 2006, 128, 6272-6273;
-
-
-
-
14
-
-
34250158080
-
-
for recent examples of thermal [2+2] cycloaddition reactions between allenes and alkenes, see: c H. Ohno, T. Mizutani, Y. Kadoh, A. Aso, K. Miyamura, N. Fujii, T. Tanaka, J. Org. Chem. 2007, 72, 4378-4389;
-
for recent examples of thermal [2+2] cycloaddition reactions between allenes and alkenes, see: c) H. Ohno, T. Mizutani, Y. Kadoh, A. Aso, K. Miyamura, N. Fujii, T. Tanaka, J. Org. Chem. 2007, 72, 4378-4389;
-
-
-
-
15
-
-
23944462767
-
-
Eds, N. Krause, A. S. K. Hashmi, Wiley-VCH, Weinheim
-
d) M. Murakami, T. Matsuda in Modern Allene Chemistry, Vol. 2 (Eds.: N. Krause, A. S. K. Hashmi), Wiley-VCH, Weinheim, 2004, pp. 727-815.
-
(2004)
Modern Allene Chemistry
, vol.2
, pp. 727-815
-
-
Murakami, M.1
Matsuda, T.2
-
16
-
-
26844568935
-
-
P. R. Blakemore, W. J. Cole, P. J. Kocienski, A. Morley, Synlett 1998, 26-28.
-
(1998)
Synlett
, pp. 26-28
-
-
Blakemore, P.R.1
Cole, W.J.2
Kocienski, P.J.3
Morley, A.4
-
17
-
-
34249320150
-
-
This choice was made after a Wittig reaction produced a mixture of stilbenes E/Z ca. 1:1, To the best of our knowledge, this is the first application of the Julia-Kocienski reaction to stilbene synthesis, and it is recommended by virtue of its efficiency and apparently higher selectivity. For an alternative approach to stilbenes, see: J. E. Robinson, R. J. K. Taylor, Chem. Commun. 2007, 1617-1619
-
This choice was made after a Wittig reaction produced a mixture of stilbenes (E/Z ca. 1:1). To the best of our knowledge, this is the first application of the Julia-Kocienski reaction to stilbene synthesis, and it is recommended by virtue of its efficiency and apparently higher selectivity. For an alternative approach to stilbenes, see: J. E. Robinson, R. J. K. Taylor, Chem. Commun. 2007, 1617-1619.
-
-
-
-
18
-
-
35048871420
-
-
a) Q. Wang, Q. Huang, B. Chen, J. Lu, H. Wang, X. She, X. Pan, Angew. Chem. 2006, 118, 3733-3735;
-
(2006)
Angew. Chem
, vol.118
, pp. 3733-3735
-
-
Wang, Q.1
Huang, Q.2
Chen, B.3
Lu, J.4
Wang, H.5
She, X.6
Pan, X.7
-
19
-
-
33746299533
-
-
Angew. Chem. Int. Ed. 2006, 45, 3651-3653.
-
(2006)
Chem. Int. Ed
, vol.45
, pp. 3651-3653
-
-
Angew1
-
20
-
-
0027940323
-
-
J. D. Godfrey, Jr., R. H. Mueller, T. C. Sedergran, N. Soundararajan, V. Colandrea, Tetrahedron Lett. 1994, 35, 6405-6408.
-
(1994)
Tetrahedron Lett
, vol.35
, pp. 6405-6408
-
-
Godfrey Jr., J.D.1
Mueller, R.H.2
Sedergran, T.C.3
Soundararajan, N.4
Colandrea, V.5
-
22
-
-
35048901340
-
-
A Discovery System model number 908005 was used.
-
A Discovery System model number 908005 was used.
-
-
-
-
23
-
-
35048840553
-
-
TLC analysis indicated that the Claisen rearrangements proceed faster than cleavage of the Boc group or the formal cycloaddition. Given the fact that hydroxy groups must be liberated prior to formation of the cyclobutane, the sequence shown in Scheme 3 is proposed
-
TLC analysis indicated that the Claisen rearrangements proceed faster than cleavage of the Boc group or the formal cycloaddition. Given the fact that hydroxy groups must be liberated prior to formation of the cyclobutane, the sequence shown in Scheme 3 is proposed.
-
-
-
-
24
-
-
35048852918
-
-
3PO are currently underway and full details will be reported in due course.
-
3PO are currently underway and full details will be reported in due course.
-
-
-
-
25
-
-
35048869016
-
-
The regiochemistry of this pivalate reaction was unambiguously proven by a ROESY NMR experiment on synthetic artochamin H (2) which exhibited cross signals between the OCH3 and the prenyl CH 2 and vinyl CH protons
-
2 and vinyl CH protons.
-
-
-
-
26
-
-
0000235735
-
-
a) K. C. Nicolaou, J. A. Pfefferkorn, G.-Q. Cao, Angew. Chem. 2000, 112, 750-755;
-
(2000)
Angew. Chem
, vol.112
, pp. 750-755
-
-
Nicolaou, K.C.1
Pfefferkorn, J.A.2
Cao, G.-Q.3
-
27
-
-
0034681474
-
-
Angew. Chem. Int. Ed. 2000, 39, 734-739;
-
(2000)
Chem. Int. Ed
, vol.39
, pp. 734-739
-
-
Angew1
-
28
-
-
0000085827
-
-
b) K. C. Nicolaou, G.-Q. Cao, J. A. Pfefferkorn, Angew. Chem. 2000, 112, 755-759;
-
(2000)
Angew. Chem
, vol.112
, pp. 755-759
-
-
Nicolaou, K.C.1
Cao, G.-Q.2
Pfefferkorn, J.A.3
-
29
-
-
0034681559
-
-
Angew. Chem. Int. Ed. 2000, 39, 739-743;
-
(2000)
Chem. Int. Ed
, vol.39
, pp. 739-743
-
-
Angew1
-
30
-
-
0034684250
-
-
c) K. C. Nicolaou, J. A. Pfefferkorn, A. J. Roecker, G.-Q. Cao, S. Barluenga, H. J. Mitchell, J. Am. Chem. Soc. 2000, 122, 9939-9953.
-
(2000)
J. Am. Chem. Soc
, vol.122
, pp. 9939-9953
-
-
Nicolaou, K.C.1
Pfefferkorn, J.A.2
Roecker, A.J.3
Cao, G.-Q.4
Barluenga, S.5
Mitchell, H.J.6
-
31
-
-
35048831217
-
-
We are grateful to Dr. Ai-Jun Hou for kindly providing the 1H and 13C NMR spectra of natural artochamins F, H, I, and J for comparison purposes
-
13C NMR spectra of natural artochamins F, H, I, and J for comparison purposes.
-
-
-
-
32
-
-
35048857706
-
-
We consider the stepwise mechanism shown in Scheme 6 to be a more plausible alternative to that originally proposed, see Ref. [6].
-
We consider the stepwise mechanism shown in Scheme 6 to be a more plausible alternative to that originally proposed, see Ref. [6].
-
-
-
-
33
-
-
35048864219
-
-
We must also consider two further mechanistic alternatives for the microwave-promoted reactions. The first, and least probable, involves a [π2s + π2a] cycloaddition. The second involves a stepwise diradical mechanism in which formation of the five-membered ring precedes diradical recombination, see Ref. [8a]. Preliminary experiments with (E)- and (Z)-5 a indicate that the formal cycloaddition reaction is not stereospecific with respect to the alkene geometry. On the basis of this observation a stepwise radical mechanism, in which bond rotation occurs to some extent before recombination of the diradical, or the redox mechanism shown in Scheme 6 are currently favored. These possibilities are under investigation and full details will be disclosed in due course.
-
We must also consider two further mechanistic alternatives for the microwave-promoted reactions. The first, and least probable, involves a [π2s + π2a] cycloaddition. The second involves a stepwise diradical mechanism in which formation of the five-membered ring precedes diradical recombination, see Ref. [8a]. Preliminary experiments with (E)- and (Z)-5 a indicate that the formal cycloaddition reaction is not stereospecific with respect to the alkene geometry. On the basis of this observation a stepwise radical mechanism, in which bond rotation occurs to some extent before recombination of the diradical, or the redox mechanism shown in Scheme 6 are currently favored. These possibilities are under investigation and full details will be disclosed in due course.
-
-
-
-
34
-
-
33847207721
-
-
For selected reviews on cascade reactions, see: a
-
For selected reviews on cascade reactions, see: a) K. C. Nicolaou, D. J. Edmonds, P. G. Bulger, Angew. Chem. 2006, 118, 7292-7344;
-
(2006)
Angew. Chem
, vol.118
, pp. 7292-7344
-
-
Nicolaou, K.C.1
Edmonds, D.J.2
Bulger, P.G.3
-
35
-
-
33750977591
-
-
Angew. Chem. Int. Ed. 2006, 45, 7134-7186;
-
(2006)
Chem. Int. Ed
, vol.45
, pp. 7134-7186
-
-
Angew1
-
36
-
-
0037423972
-
-
b) K. C. Nicolaou, T. Montagnon, S. A. Snyder, Chem. Commun. 2003, 5, 551-564;
-
(2003)
Chem. Commun
, vol.5
, pp. 551-564
-
-
Nicolaou, K.C.1
Montagnon, T.2
Snyder, S.A.3
-
37
-
-
7044235263
-
-
c) L. F. Tietze, Chem. Rev. 1996, 96, 115-136;
-
(1996)
Chem. Rev
, vol.96
, pp. 115-136
-
-
Tietze, L.F.1
-
42
-
-
0028879573
-
-
g) R. A. Bunce, Tetrahedron 1995, 51, 13103-13159.
-
(1995)
Tetrahedron
, vol.51
, pp. 13103-13159
-
-
Bunce, R.A.1
|