-
1
-
-
21144433501
-
Termination and productivity checking with continuous types
-
A. Abel. Termination and productivity checking with continuous types. In Proc. of TLCA'03, LNCS 2701.
-
Proc. of TLCA'03, LNCS
, vol.2701
-
-
Abel, A.1
-
2
-
-
33645482880
-
Termination checking with types
-
Ludwig Maximilians Universität, München, Germany
-
A. Abel. Termination checking with types. Technical Report 0201, Ludwig Maximilians Universität, München, Germany, 2002.
-
(2002)
Technical Report 0201
-
-
Abel, A.1
-
4
-
-
0001439401
-
Lambda calculi with types
-
S. Abramski, D. Gabbay, and T. Maibaum, editors, Oxford University Press
-
H. Barendregt. Lambda calculi with types. In S. Abramski, D. Gabbay, and T. Maibaum, editors, Handbook of logic in computer science, volume 2. Oxford University Press, 1992.
-
(1992)
Handbook of Logic in Computer Science
, vol.2
-
-
Barendregt, H.1
-
5
-
-
84855618972
-
Type-based termination of recursive definitions
-
G. Barthe, M. J. Prade, E. Giménez, L. Pinto, and T. Uustalu. Type-based termination of recursive definitions. Mathematical Structures in Computer Science, 14(1):97-141, 2004.
-
(2004)
Mathematical Structures in Computer Science
, vol.14
, Issue.1
, pp. 97-141
-
-
Barthe, G.1
Prade, M.J.2
Giménez, E.3
Pinto, L.4
Uustalu, T.5
-
6
-
-
35248869192
-
Inductive types in the Calculus of Algebraic Constructions
-
LNCS
-
F. Blanqui. Inductive types in the Calculus of Algebraic Constructions. In Proc. of TLCA'03, LNCS 2701.
-
Proc. of TLCA'03
, vol.2701
-
-
Blanqui, F.1
-
7
-
-
33750692203
-
Rewriting modulo in Deduction modulo
-
LNCS
-
F. Blanqui. Rewriting modulo in Deduction modulo. In Proc. of RTA'03, LNCS 2706.
-
Proc. of RTA'03
, vol.2706
-
-
Blanqui, F.1
-
8
-
-
84941179813
-
Termination and confluence of higher-order rewrite systems
-
F. Blanqui. Termination and confluence of higher-order rewrite systems. In Proc. of RTA'00, LNCS 1833.
-
(1833)
Proc. of RTA'00, LNCS
-
-
Blanqui, F.1
-
9
-
-
84944130043
-
A type-based termination criterion for dependently-typed higher-order rewrite systems
-
F. Blanqui. A type-based termination criterion for dependently-typed higher-order rewrite systems. Draft. 38 pages. http://www.loria.fr/~blanqui/.
-
Draft
, pp. 38
-
-
Blanqui, F.1
-
15
-
-
0000029077
-
Rewrite systems
-
J. van Leeuwen, editor, chap. 6. North-Holland
-
N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, vol. B, chap. 6. North-Holland, 1990.
-
(1990)
Handbook of Theoretical Computer Science
, vol.B
-
-
Dershowitz, N.1
Jouannaud, J.-P.2
-
17
-
-
0031212315
-
Termination of nested and mutually recursive algorithms
-
J. Giesl. Termination of nested and mutually recursive algorithms. Journal of Automated Reasoning, 19(1):1-29, 1997.
-
(1997)
Journal of Automated Reasoning
, vol.19
, Issue.1
, pp. 1-29
-
-
Giesl, J.1
-
20
-
-
0001820666
-
Proving the correctness of reactive systems using sized types
-
J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive systems using sized types. In Proc. of POPL'96.
-
Proc. of POPL'96.
-
-
Hughes, J.1
Pareto, L.2
Sabry, A.3
-
24
-
-
0004278720
-
-
PhD thesis, Katholiecke Universiteit Nijmegen, The Netherlands
-
M. Stefanova. Properties of Typing Systems. PhD thesis, Katholiecke Universiteit Nijmegen, The Netherlands, 1998.
-
(1998)
Properties of Typing Systems
-
-
Stefanova, M.1
-
25
-
-
0037350925
-
Termination of rewriting in the Calculus of Constructions
-
D. Walukiewicz-Chrza̧szcz. Termination of rewriting in the Calculus of Constructions. Journal of Functional Programming, 13(2):339-414, 2003.
-
(2003)
Journal of Functional Programming
, vol.13
, Issue.2
, pp. 339-414
-
-
Walukiewicz-Chrza̧szcz, D.1
-
26
-
-
0036521845
-
Dependent types for program termination verification
-
H. Xi. Dependent types for program termination verification. Journal of Higher-Order and Symbolic Computation, 15(1):91-131, 2002.
-
(2002)
Journal of Higher-Order and Symbolic Computation
, vol.15
, Issue.1
, pp. 91-131
-
-
Xi, H.1
|