메뉴 건너뛰기




Volumn 6, Issue 2, 2007, Pages

The study of a nonstationary maximum entropy Markov model and its application on the pos-tagging task

Author keywords

Data sparseness problem; Markov property; MEMM; Pos tagging; Stationary hypothesis

Indexed keywords

COMPUTATIONAL COMPLEXITY; INFORMATION ANALYSIS; MATHEMATICAL MODELS; NATURAL LANGUAGE PROCESSING SYSTEMS;

EID: 34948911237     PISSN: 15300226     EISSN: 15583430     Source Type: Journal    
DOI: 10.1145/1282080.1282082     Document Type: Article
Times cited : (10)

References (26)
  • 6
    • 0001573124 scopus 로고
    • Generalized iterative scaling for log-linear models
    • DARROCH, J. AND RATCLIFF, D. 1972. Generalized iterative scaling for log-linear models. Ann. Math. Statistics 43, 1470-1480.
    • (1972) Ann. Math. Statistics , vol.43 , pp. 1470-1480
    • DARROCH, J.1    RATCLIFF, D.2
  • 7
    • 0036571002 scopus 로고    scopus 로고
    • An MCMC sampling approach to estimation of nonstationary hidden Markov models
    • DJURIC, P. M. AND CHUN, J.H. 2002. An MCMC sampling approach to estimation of nonstationary hidden Markov models. IEEE Trans. Signal Processing 50, 5, 1113-1124.
    • (2002) IEEE Trans. Signal Processing , vol.50 , Issue.5 , pp. 1113-1124
    • DJURIC, P.M.1    CHUN, J.H.2
  • 8
    • 28444469641 scopus 로고    scopus 로고
    • A seqlet-based maximum entropy Markov approach for protein secondary structure prediction
    • DONG, Q. W., WANG, X. L., LIN, L., GUAN, Y., AND ZHAO, J. 2005. A seqlet-based maximum entropy Markov approach for protein secondary structure prediction. China Ser. C Life Sciences 48, 4, 394-405.
    • (2005) China Ser. C Life Sciences , vol.48 , Issue.4 , pp. 394-405
    • DONG, Q.W.1    WANG, X.L.2    LIN, L.3    GUAN, Y.4    ZHAO, J.5
  • 10
    • 33846627491 scopus 로고    scopus 로고
    • GAO, J. F., YU, H., AND YUAN, W. 2005. Minimum sample risk methods for language modeling. In Proceedings of the Human Language Technology Conference on Empirical Methods in Natural Language Processing (HLT/EMNLP 2005, Vancouver, B.C., Oct 6-8).
    • GAO, J. F., YU, H., AND YUAN, W. 2005. Minimum sample risk methods for language modeling. In Proceedings of the Human Language Technology Conference on Empirical Methods in Natural Language Processing (HLT/EMNLP 2005, Vancouver, B.C., Oct 6-8).
  • 11
    • 0000803388 scopus 로고
    • The population frequencies of species and the estimation of population parameters
    • GOOD, I. J. 1953. The population frequencies of species and the estimation of population parameters. Biometrika 40, 16, 237-264.
    • (1953) Biometrika , vol.40 , Issue.16 , pp. 237-264
    • GOOD, I.J.1
  • 13
    • 17444405333 scopus 로고    scopus 로고
    • Hidden Markov models with states depending on observations
    • LI, Y. J. 2005. Hidden Markov models with states depending on observations. Pattern Recognition Lett. 26, 7, 977-984.
    • (2005) Pattern Recognition Lett , vol.26 , Issue.7 , pp. 977-984
    • LI, Y.J.1
  • 17
    • 0038172395 scopus 로고    scopus 로고
    • Tutorial on maximum likelihood estimation
    • MYUNG, I. J. 2003. Tutorial on maximum likelihood estimation. J. Mathematical Psychology 47, 90-100.
    • (2003) J. Mathematical Psychology , vol.47 , pp. 90-100
    • MYUNG, I.J.1
  • 20
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • RABINER, L. R. 1989. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77, 2, 257-286.
    • (1989) Proc. IEEE , vol.77 , Issue.2 , pp. 257-286
    • RABINER, L.R.1
  • 21
    • 0030181951 scopus 로고    scopus 로고
    • A maximum entropy approach to adaptive statistical language modeling
    • ROSENFELD, R. 1996. A maximum entropy approach to adaptive statistical language modeling. Computer, Speech and Language 10, 187-228.
    • (1996) Computer, Speech and Language , vol.10 , pp. 187-228
    • ROSENFELD, R.1
  • 22
    • 0036471883 scopus 로고    scopus 로고
    • Nonstationary-state hidden Markov Model representation of speech signals for speech enhancement
    • SAMETII, H. AND DENG, L. 2002. Nonstationary-state hidden Markov Model representation of speech signals for speech enhancement. IEEE Trans. Signal Processing 82, 2, 205-227.
    • (2002) IEEE Trans. Signal Processing , vol.82 , Issue.2 , pp. 205-227
    • SAMETII, H.1    DENG, L.2
  • 23
    • 0029368174 scopus 로고
    • Nonstationary hidden Markov model
    • SIN, B. AND KIM, J. H. 1995. Nonstationary hidden Markov model. IEEE Trans. Signal Processing 46, 1, 31-46.
    • (1995) IEEE Trans. Signal Processing , vol.46 , Issue.1 , pp. 31-46
    • SIN, B.1    KIM, J.H.2
  • 25
    • 2342443171 scopus 로고    scopus 로고
    • Duration distribution based HMM speech recognition models
    • WANG, Z. Y. AND XIAO, X. 2004. Duration distribution based HMM speech recognition models. ACTA Electronica Sinica 32, 1, 46-49.
    • (2004) ACTA Electronica Sinica , vol.32 , Issue.1 , pp. 46-49
    • WANG, Z.Y.1    XIAO, X.2
  • 26
    • 34948891480 scopus 로고    scopus 로고
    • XIAO, J. H., LIUU, B. Q., AND D. WANG, X. L. 2005. Principles of a non-stationary hidden Markov model and its applications to the sequence labeling task, In Proceedings of the 2nd International Joint Conference on Natural Language Processing (IJCNLP 2005, Jeju, Korea), Lecture Notes in Artificial Intelligence, Springer Verlag, New York.
    • XIAO, J. H., LIUU, B. Q., AND D. WANG, X. L. 2005. Principles of a non-stationary hidden Markov model and its applications to the sequence labeling task, In Proceedings of the 2nd International Joint Conference on Natural Language Processing (IJCNLP 2005, Jeju, Korea), Lecture Notes in Artificial Intelligence, Springer Verlag, New York.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.