-
1
-
-
0032677119
-
An omnifont open-vocabulary OCR system for English and Arabic
-
BAZZI, I., SCHWARTZ, R. M., AND MAKHOUL, J. 1999. An omnifont open-vocabulary OCR system for English and Arabic, IEEE Tran. Pattern Analysis and Machine Intelligence 21, 6, 495-504.
-
(1999)
IEEE Tran. Pattern Analysis and Machine Intelligence
, vol.21
, Issue.6
, pp. 495-504
-
-
BAZZI, I.1
SCHWARTZ, R.M.2
MAKHOUL, J.3
-
2
-
-
85022919385
-
Class-based n-gram models of natural language
-
BROWN, P. F., PIETRA, V. J. D., DESOUZA, P. V., LAI, J. C., AND MERCER, R. L. 1992. Class-based n-gram models of natural language. Computational Linguistics 18, 4, 467-479.
-
(1992)
Computational Linguistics
, vol.18
, Issue.4
, pp. 467-479
-
-
BROWN, P.F.1
PIETRA, V.J.D.2
DESOUZA, P.V.3
LAI, J.C.4
MERCER, R.L.5
-
4
-
-
80053411091
-
Discriminative syntactic language modeling for speech recognition
-
ACL, Ann Arbor, MI
-
COLLINS, M., ROARK, B., AND SARACLAR, M. 2005. Discriminative syntactic language modeling for speech recognition, In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL 2005, Ann Arbor, MI).
-
(2005)
Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics
-
-
COLLINS, M.1
ROARK, B.2
SARACLAR, M.3
-
6
-
-
0001573124
-
Generalized iterative scaling for log-linear models
-
DARROCH, J. AND RATCLIFF, D. 1972. Generalized iterative scaling for log-linear models. Ann. Math. Statistics 43, 1470-1480.
-
(1972)
Ann. Math. Statistics
, vol.43
, pp. 1470-1480
-
-
DARROCH, J.1
RATCLIFF, D.2
-
7
-
-
0036571002
-
An MCMC sampling approach to estimation of nonstationary hidden Markov models
-
DJURIC, P. M. AND CHUN, J.H. 2002. An MCMC sampling approach to estimation of nonstationary hidden Markov models. IEEE Trans. Signal Processing 50, 5, 1113-1124.
-
(2002)
IEEE Trans. Signal Processing
, vol.50
, Issue.5
, pp. 1113-1124
-
-
DJURIC, P.M.1
CHUN, J.H.2
-
8
-
-
28444469641
-
A seqlet-based maximum entropy Markov approach for protein secondary structure prediction
-
DONG, Q. W., WANG, X. L., LIN, L., GUAN, Y., AND ZHAO, J. 2005. A seqlet-based maximum entropy Markov approach for protein secondary structure prediction. China Ser. C Life Sciences 48, 4, 394-405.
-
(2005)
China Ser. C Life Sciences
, vol.48
, Issue.4
, pp. 394-405
-
-
DONG, Q.W.1
WANG, X.L.2
LIN, L.3
GUAN, Y.4
ZHAO, J.5
-
10
-
-
33846627491
-
-
GAO, J. F., YU, H., AND YUAN, W. 2005. Minimum sample risk methods for language modeling. In Proceedings of the Human Language Technology Conference on Empirical Methods in Natural Language Processing (HLT/EMNLP 2005, Vancouver, B.C., Oct 6-8).
-
GAO, J. F., YU, H., AND YUAN, W. 2005. Minimum sample risk methods for language modeling. In Proceedings of the Human Language Technology Conference on Empirical Methods in Natural Language Processing (HLT/EMNLP 2005, Vancouver, B.C., Oct 6-8).
-
-
-
-
11
-
-
0000803388
-
The population frequencies of species and the estimation of population parameters
-
GOOD, I. J. 1953. The population frequencies of species and the estimation of population parameters. Biometrika 40, 16, 237-264.
-
(1953)
Biometrika
, vol.40
, Issue.16
, pp. 237-264
-
-
GOOD, I.J.1
-
12
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
LAFFERTY, J., PEREIRA, F., AND MCCALLUM, A. 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data, In Proceedings of the 8th International Conference on Machine Learning (ICML 2001), 282-289.
-
(2001)
Proceedings of the 8th International Conference on Machine Learning (ICML 2001)
, pp. 282-289
-
-
LAFFERTY, J.1
PEREIRA, F.2
MCCALLUM, A.3
-
13
-
-
17444405333
-
Hidden Markov models with states depending on observations
-
LI, Y. J. 2005. Hidden Markov models with states depending on observations. Pattern Recognition Lett. 26, 7, 977-984.
-
(2005)
Pattern Recognition Lett
, vol.26
, Issue.7
, pp. 977-984
-
-
LI, Y.J.1
-
15
-
-
0032672125
-
Smoothing Methods in Maximum Entropy Language Modeling
-
Phoenix, AR
-
MARTIN, S., NEY, H., AND ZAPLO, J. 1999. Smoothing Methods in Maximum Entropy Language Modeling, In Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 1999), 1:545-548. Phoenix, AR.
-
(1999)
Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 1999)
, vol.1
, pp. 545-548
-
-
MARTIN, S.1
NEY, H.2
ZAPLO, J.3
-
16
-
-
0000747663
-
Maximum Entropy Markov Models for Information Extraction and Segmentation
-
MCCALLUM, A., FREITAG, D., AND PEREIRA, F. C. N. 2000. Maximum Entropy Markov Models for Information Extraction and Segmentation, In Proceedings of the 7th International Conference on Machine Learning (ICML 2000): 591-598.
-
(2000)
Proceedings of the 7th International Conference on Machine Learning (ICML 2000)
, pp. 591-598
-
-
MCCALLUM, A.1
FREITAG, D.2
PEREIRA, F.C.N.3
-
17
-
-
0038172395
-
Tutorial on maximum likelihood estimation
-
MYUNG, I. J. 2003. Tutorial on maximum likelihood estimation. J. Mathematical Psychology 47, 90-100.
-
(2003)
J. Mathematical Psychology
, vol.47
, pp. 90-100
-
-
MYUNG, I.J.1
-
19
-
-
0031120321
-
Inducing features of random fields
-
PIETRA, S. D., PIETRA, V. D., AND LAFFERTY, J. 1997. Inducing features of random fields. IEEE Trans. Pattern Analysis and Machine Intelligence 19, 380-393.
-
(1997)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.19
, pp. 380-393
-
-
PIETRA, S.D.1
PIETRA, V.D.2
LAFFERTY, J.3
-
20
-
-
0024610919
-
A tutorial on hidden Markov models and selected applications in speech recognition
-
RABINER, L. R. 1989. A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77, 2, 257-286.
-
(1989)
Proc. IEEE
, vol.77
, Issue.2
, pp. 257-286
-
-
RABINER, L.R.1
-
21
-
-
0030181951
-
A maximum entropy approach to adaptive statistical language modeling
-
ROSENFELD, R. 1996. A maximum entropy approach to adaptive statistical language modeling. Computer, Speech and Language 10, 187-228.
-
(1996)
Computer, Speech and Language
, vol.10
, pp. 187-228
-
-
ROSENFELD, R.1
-
22
-
-
0036471883
-
Nonstationary-state hidden Markov Model representation of speech signals for speech enhancement
-
SAMETII, H. AND DENG, L. 2002. Nonstationary-state hidden Markov Model representation of speech signals for speech enhancement. IEEE Trans. Signal Processing 82, 2, 205-227.
-
(2002)
IEEE Trans. Signal Processing
, vol.82
, Issue.2
, pp. 205-227
-
-
SAMETII, H.1
DENG, L.2
-
23
-
-
0029368174
-
Nonstationary hidden Markov model
-
SIN, B. AND KIM, J. H. 1995. Nonstationary hidden Markov model. IEEE Trans. Signal Processing 46, 1, 31-46.
-
(1995)
IEEE Trans. Signal Processing
, vol.46
, Issue.1
, pp. 31-46
-
-
SIN, B.1
KIM, J.H.2
-
24
-
-
34250774143
-
Chinese chunking based on maximum entropy Markov models
-
SUN, G. L., HUANG, C. N., WANG, X. L., AND XU, Z. M. 2006. Chinese chunking based on maximum entropy Markov models. Int. J. Computational Linguistics and Chinese Language Processing 11, 2, 115-136.
-
(2006)
Int. J. Computational Linguistics and Chinese Language Processing
, vol.11
, Issue.2
, pp. 115-136
-
-
SUN, G.L.1
HUANG, C.N.2
WANG, X.L.3
XU, Z.M.4
-
25
-
-
2342443171
-
Duration distribution based HMM speech recognition models
-
WANG, Z. Y. AND XIAO, X. 2004. Duration distribution based HMM speech recognition models. ACTA Electronica Sinica 32, 1, 46-49.
-
(2004)
ACTA Electronica Sinica
, vol.32
, Issue.1
, pp. 46-49
-
-
WANG, Z.Y.1
XIAO, X.2
-
26
-
-
34948891480
-
-
XIAO, J. H., LIUU, B. Q., AND D. WANG, X. L. 2005. Principles of a non-stationary hidden Markov model and its applications to the sequence labeling task, In Proceedings of the 2nd International Joint Conference on Natural Language Processing (IJCNLP 2005, Jeju, Korea), Lecture Notes in Artificial Intelligence, Springer Verlag, New York.
-
XIAO, J. H., LIUU, B. Q., AND D. WANG, X. L. 2005. Principles of a non-stationary hidden Markov model and its applications to the sequence labeling task, In Proceedings of the 2nd International Joint Conference on Natural Language Processing (IJCNLP 2005, Jeju, Korea), Lecture Notes in Artificial Intelligence, Springer Verlag, New York.
-
-
-
|