-
1
-
-
0034871624
-
Hausdorff dimension in exponential time
-
Chicago, IL, IEEE Computer Society Press, Piscataway, NJ
-
K. AMBOS-SPIES, W. MERKLE, J. REIMANN, AND F. STEPHAN, Hausdorff dimension in exponential time, in Proceedings of the 16th IEEE Conference on Computational Complexity, Chicago, IL, IEEE Computer Society Press, Piscataway, NJ, 2001, pp. 210-217.
-
(2001)
Proceedings of the 16th IEEE Conference on Computational Complexity
, pp. 210-217
-
-
AMBOS-SPIES, K.1
MERKLE, W.2
REIMANN, J.3
STEPHAN, F.4
-
2
-
-
0031070091
-
Resource bounded randomness and weakly complete problems
-
K. AMBOS-SPIES, S. A. TERWIJN, AND X. ZHENG, Resource bounded randomness and weakly complete problems, Theoret. Comput. Sci., 172 (1997), pp. 195-207.
-
(1997)
Theoret. Comput. Sci
, vol.172
, pp. 195-207
-
-
AMBOS-SPIES, K.1
TERWIJN, S.A.2
ZHENG, X.3
-
4
-
-
0342733652
-
Equivalence of measures of complexity classes
-
J. M. BREUTZMANN AND J. H. LUTZ, Equivalence of measures of complexity classes, SIAM J. Comput., 29 (1999), pp. 302-326.
-
(1999)
SIAM J. Comput
, vol.29
, pp. 302-326
-
-
BREUTZMANN, J.M.1
LUTZ, J.H.2
-
5
-
-
0028712369
-
On Hausdorff and topological dimensions of the Kolmogorov complexity of the real line
-
J. CAI AND J. HARTMANIS, On Hausdorff and topological dimensions of the Kolmogorov complexity of the real line, J. Comput. Systems Sci., 49 (1994), pp. 605-619.
-
(1994)
J. Comput. Systems Sci
, vol.49
, pp. 605-619
-
-
CAI, J.1
HARTMANIS, J.2
-
6
-
-
0016532771
-
A theory of program size formally identical to information theory
-
G. J. CHAITIN, A theory of program size formally identical to information theory, J. ACM, 22 (1975), pp. 329-340.
-
(1975)
J. ACM
, vol.22
, pp. 329-340
-
-
CHAITIN, G.J.1
-
7
-
-
0242440301
-
Finite-state dimension
-
J. J. DAI, J. I. LATHROP, J. H. LUTZ, AND E. MAYORDOMO, Finite-state dimension, Theoret. Comput. Sci., 310 (2004), pp. 1-33.
-
(2004)
Theoret. Comput. Sci
, vol.310
, pp. 1-33
-
-
DAI, J.J.1
LATHROP, J.I.2
LUTZ, J.H.3
MAYORDOMO, E.4
-
10
-
-
46449133755
-
-
S. A. FENNER, Gales and Supergales are Equivalent for Defining Constructive Hausdorff Dimension, Technical Report cs.CC/0208044, Computing Research Repository, Cornell University, Ithaca, NY, 2002.
-
S. A. FENNER, Gales and Supergales are Equivalent for Defining Constructive Hausdorff Dimension, Technical Report cs.CC/0208044, Computing Research Repository, Cornell University, Ithaca, NY, 2002.
-
-
-
-
12
-
-
34250950477
-
Dimension und äußeres Maß
-
F. HAUSDORFF, Dimension und äußeres Maß, Math. Ann., 79 (1919), pp. 157-179.
-
(1919)
Math. Ann
, vol.79
, pp. 157-179
-
-
HAUSDORFF, F.1
-
13
-
-
0037163961
-
MAX3SAT is exponentially hard to approximate if NP has positive dimension
-
J. M. HITCHCOCK, MAX3SAT is exponentially hard to approximate if NP has positive dimension, Theoret. Comput. Sci., 289 (2002), pp. 861-869.
-
(2002)
Theoret. Comput. Sci
, vol.289
, pp. 861-869
-
-
HITCHCOCK, J.M.1
-
14
-
-
0037811185
-
Fractal dimension and logarithmic loss unpredictability
-
J. M. HITCHCOCK, Fractal dimension and logarithmic loss unpredictability, Theoret. Comput. Sci., 304 (2003), pp. 431-441.
-
(2003)
Theoret. Comput. Sci
, vol.304
, pp. 431-441
-
-
HITCHCOCK, J.M.1
-
15
-
-
0037447594
-
Gales suffice for constructive dimension
-
J. M. HITCHCOCK, Gales suffice for constructive dimension, Inform. Process. Lett., 86 (2003), pp. 9-12.
-
(2003)
Inform. Process. Lett
, vol.86
, pp. 9-12
-
-
HITCHCOCK, J.M.1
-
16
-
-
23844521264
-
Correspondence principles for effective dimensions
-
J. M. HITCHCOCK, Correspondence principles for effective dimensions, Theory Comput. Systems, 38 (2005), pp. 559-571.
-
(2005)
Theory Comput. Systems
, vol.38
, pp. 559-571
-
-
HITCHCOCK, J.M.1
-
17
-
-
0000616816
-
On the equivalence of infinite product measures
-
S. KAKUTANI, On the equivalence of infinite product measures, Ann. Math., 49 (1948), pp. 214-224.
-
(1948)
Ann. Math
, vol.49
, pp. 214-224
-
-
KAKUTANI, S.1
-
20
-
-
0026851355
-
Almost everywhere high nonuniform complexity
-
J. H. LUTZ, Almost everywhere high nonuniform complexity, J. Comput. System Sci., 44 (1992), pp. 220-258.
-
(1992)
J. Comput. System Sci
, vol.44
, pp. 220-258
-
-
LUTZ, J.H.1
-
21
-
-
0001937723
-
Resource-bounded measure
-
Buffalo, NY, IEEE Computer Society Press, Piscataway, NJ
-
J. H. LUTZ, Resource-bounded measure, in Proceedings of the 13th IEEE Conference on Computational Complexity, Buffalo, NY, 1998, IEEE Computer Society Press, Piscataway, NJ, 1998, pp. 236-248.
-
(1998)
Proceedings of the 13th IEEE Conference on Computational Complexity
, pp. 236-248
-
-
LUTZ, J.H.1
-
22
-
-
0033718506
-
Dimension in complexity classes
-
Florence, Italy, IEEE Computer Society Press, Piscataway, NJ
-
J. LUTZ, Dimension in complexity classes, in Proceedings of the 15th IEEE Conference on Computational Complexity, Florence, Italy, 2000, IEEE Computer Society Press, Piscataway, NJ, 2000, pp. 158-169.
-
(2000)
Proceedings of the 15th IEEE Conference on Computational Complexity
, pp. 158-169
-
-
LUTZ, J.1
-
23
-
-
0345227319
-
Dimension in complexity classes
-
J. H. LUTZ, Dimension in complexity classes, SIAM J. Comput., 32 (2003), pp. 1236-1259.
-
(2003)
SIAM J. Comput
, vol.32
, pp. 1236-1259
-
-
LUTZ, J.H.1
-
24
-
-
0344118726
-
The dimensions of individual strings and sequences
-
J. H. LUTZ, The dimensions of individual strings and sequences, Inform. Comput., 187 (2003), pp. 49-79.
-
(2003)
Inform. Comput
, vol.187
, pp. 49-79
-
-
LUTZ, J.H.1
-
25
-
-
18344371384
-
The definition of random sequences
-
P. MARTIN-LÖF, The definition of random sequences, Information and Control, 9 (1966), pp. 602-619.
-
(1966)
Information and Control
, vol.9
, pp. 602-619
-
-
MARTIN-LÖF, P.1
-
26
-
-
21444447771
-
Measure and dimension functions: Measurability and densities
-
P. MATTILA AND R. MAULDIN, Measure and dimension functions: Measurability and densities, Math. Proc. Cambridge Philos. Soc., 121 (1997), pp. 81-100.
-
(1997)
Math. Proc. Cambridge Philos. Soc
, vol.121
, pp. 81-100
-
-
MATTILA, P.1
MAULDIN, R.2
-
27
-
-
0037120704
-
A Kolmogorov complexity characterization of constructive Hausdorff dimension
-
E. MAYORDOMO, A Kolmogorov complexity characterization of constructive Hausdorff dimension, Inform. Process. Lett., 84 (2002), pp. 1-3.
-
(2002)
Inform. Process. Lett
, vol.84
, pp. 1-3
-
-
MAYORDOMO, E.1
-
28
-
-
26844493665
-
Effective Hausdorff dimension
-
Kluwer Academic Publishers, Dordrecht, The Netherlands
-
E. MAYORDOMO, Effective Hausdorff dimension, in Classical and New Paradigms of Computation and Their Complexity Hierarchies, Trends in Logic 23, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2004, pp. 171-186.
-
(2004)
Classical and New Paradigms of Computation and Their Complexity Hierarchies, Trends in Logic
, vol.23
, pp. 171-186
-
-
MAYORDOMO, E.1
-
29
-
-
0004492226
-
Coding of combinatorial sources and Hausdorff dimension
-
B. YA, RYABKO, Coding of combinatorial sources and Hausdorff dimension, Soviet Math. Dokl., 30 (1984), pp. 219-222.
-
(1984)
Soviet Math. Dokl
, vol.30
, pp. 219-222
-
-
YA, B.1
RYABKO2
-
30
-
-
0022741249
-
Noiseless coding of combinatorial sources
-
B. YA, RYABKO, Noiseless coding of combinatorial sources, Probl. Inform. Transm., 22 (1986), pp. 170-179.
-
(1986)
Probl. Inform. Transm
, vol.22
, pp. 170-179
-
-
YA, B.1
RYABKO2
-
31
-
-
0004018518
-
Algorithmic approach to the prediction problem
-
B. YA, RYABKO, Algorithmic approach to the prediction problem, Probl. Inform. Transm., 29 (1993), pp. 186-193.
-
(1993)
Probl. Inform. Transm
, vol.29
, pp. 186-193
-
-
YA, B.1
RYABKO2
-
32
-
-
0000797906
-
The complexity and effectiveness of prediction problems
-
B. YA, RYABKO, The complexity and effectiveness of prediction problems, J. Complexity, 10 (1994), pp. 281-295.
-
(1994)
J. Complexity
, vol.10
, pp. 281-295
-
-
YA, B.1
RYABKO2
-
33
-
-
0000583779
-
A unified approach to the definition of random sequences
-
C. P. SCHNORR, A unified approach to the definition of random sequences, Math. Systems Theory, 5 (1971), pp. 246-258.
-
(1971)
Math. Systems Theory
, vol.5
, pp. 246-258
-
-
SCHNORR, C.P.1
-
34
-
-
0002411710
-
Zufälligkeit und Wahrscheinlichkeit
-
Springer-Verlag, New York
-
C. P. SCHNORR, Zufälligkeit und Wahrscheinlichkeit, Lecture Notes in Math. 218, Springer-Verlag, New York, 1971.
-
(1971)
Lecture Notes in Math
, vol.218
-
-
SCHNORR, C.P.1
-
35
-
-
0015902552
-
Process complexity and effective random tests
-
C. P. SCHNORR, Process complexity and effective random tests, J. Comput. System Sci., 7 (1973), pp. 376-388.
-
(1973)
J. Comput. System Sci
, vol.7
, pp. 376-388
-
-
SCHNORR, C.P.1
-
36
-
-
46449122384
-
-
C. P. SCHNORR, A survey of the theory of random sequences, in Basic Problems in Methodology and Linguistics, R. E. Butts and J. Hintikka, eds., D. Reidel, Boston, 1977, pp. 193-211.
-
C. P. SCHNORR, A survey of the theory of random sequences, in Basic Problems in Methodology and Linguistics, R. E. Butts and J. Hintikka, eds., D. Reidel, Boston, 1977, pp. 193-211.
-
-
-
-
37
-
-
84940644968
-
-
C. E. SHANNON, A mathematical theory of communication, Bell System Tech. J., 27 (1948), pp. 379-423, 623-656.
-
C. E. SHANNON, A mathematical theory of communication, Bell System Tech. J., 27 (1948), pp. 379-423, 623-656.
-
-
-
-
38
-
-
38249002230
-
Kolmogorov complexity and Hausdorff dimension
-
L. STAIGER, Kolmogorov complexity and Hausdorff dimension, Inform. Comput., 103 (1993), pp. 159-194.
-
(1993)
Inform. Comput
, vol.103
, pp. 159-194
-
-
STAIGER, L.1
-
39
-
-
0038856793
-
A tight upper bound on Kolmogorov complexity and uniformly optimal prediction
-
L. STAIGER, A tight upper bound on Kolmogorov complexity and uniformly optimal prediction, Theory Comput. Syst., 31 (1998), pp. 215-229.
-
(1998)
Theory Comput. Syst
, vol.31
, pp. 215-229
-
-
STAIGER, L.1
-
40
-
-
46449122701
-
-
L. STAIGER, How much can you win when your adversary is handicapped?, in Numbers, Information and Complexity, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000, pp. 403-412.
-
L. STAIGER, How much can you win when your adversary is handicapped?, in Numbers, Information and Complexity, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000, pp. 403-412.
-
-
-
-
41
-
-
0000144097
-
Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups
-
D. SULLIVAN, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math., 153 (1984), pp. 259-277.
-
(1984)
Acta Math
, vol.153
, pp. 259-277
-
-
SULLIVAN, D.1
-
42
-
-
10444239935
-
A generalization of Chaitin's halting probability Ω and halting self-similar sets
-
K. TADAKI, A generalization of Chaitin's halting probability Ω and halting self-similar sets, Hokkaido Math. J., 31 (2002), pp. 219-253.
-
(2002)
Hokkaido Math. J
, vol.31
, pp. 219-253
-
-
TADAKI, K.1
-
43
-
-
84971877468
-
Two definitions of fractional dimension
-
C. TRICOT, Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc., 91 (1982), pp. 57-74.
-
(1982)
Math. Proc. Cambridge Philos. Soc
, vol.91
, pp. 57-74
-
-
TRICOT, C.1
-
44
-
-
38049164974
-
-
Ph.D. thesis, Department of Mathematics, University of Amsterdam, Amsterdam
-
M. VAN LAMBALGEN, Random Sequences, Ph.D. thesis, Department of Mathematics, University of Amsterdam, Amsterdam, 1987.
-
(1987)
Random Sequences
-
-
VAN LAMBALGEN, M.1
-
45
-
-
0000651254
-
Von Mises' definition of random sequences reconsidered
-
M. VAN LAMBALGEN, Von Mises' definition of random sequences reconsidered, J. Symbolic Logic, 52 (1987), pp. 725 755.
-
(1987)
J. Symbolic Logic
, vol.52
, pp. 725-755
-
-
VAN LAMBALGEN, M.1
-
47
-
-
0000727615
-
On a randomness criterion
-
V. G. VOVK, On a randomness criterion, Soviet Math. Dokl., 35 (1987), pp. 656-660.
-
(1987)
Soviet Math. Dokl
, vol.35
, pp. 656-660
-
-
VOVK, V.G.1
-
48
-
-
0017996424
-
Coding theorems for individual sequences
-
J. ZIV, Coding theorems for individual sequences, IEEE Trans. Inform. Theory, 24 (1978), pp. 405-412.
-
(1978)
IEEE Trans. Inform. Theory
, vol.24
, pp. 405-412
-
-
ZIV, J.1
-
49
-
-
0018019231
-
Compression of individual sequences via variable rate coding
-
J. ZIV AND A. LEMPEL, Compression of individual sequences via variable rate coding, IEEE Trans. Inform. Theory, 24 (1978), pp. 530-536.
-
(1978)
IEEE Trans. Inform. Theory
, vol.24
, pp. 530-536
-
-
ZIV, J.1
LEMPEL, A.2
|