-
4
-
-
0034300937
-
-
Humphris, A.; Tamayo, J.; Miles, M. Langmuir 2000, 16, 7891-7894.
-
(2000)
Langmuir
, vol.16
, pp. 7891-7894
-
-
Humphris, A.1
Tamayo, J.2
Miles, M.3
-
5
-
-
0037023033
-
-
Humphris, A.; Antognozzi, M.; McMaster, T.; Miles, M. Langmuir 2002, 18, 1729-1733.
-
(2002)
Langmuir
, vol.18
, pp. 1729-1733
-
-
Humphris, A.1
Antognozzi, M.2
McMaster, T.3
Miles, M.4
-
6
-
-
21244500106
-
-
Janovjak, H.; Müller, D. J.; Humphris, A. D. L. Biophys. J. 2005, 88, 1423-1431.
-
(2005)
Biophys. J
, vol.88
, pp. 1423-1431
-
-
Janovjak, H.1
Müller, D.J.2
Humphris, A.D.L.3
-
7
-
-
33947679292
-
-
Kawakami, M.; Byrne, K.; Khatri, B.; Mcleish, T. C. B.; Radford, S. E.; Smith, D. A. Langmuir 2004, 401, 400-403.
-
(2004)
Langmuir
, vol.401
, pp. 400-403
-
-
Kawakami, M.1
Byrne, K.2
Khatri, B.3
Mcleish, T.C.B.4
Radford, S.E.5
Smith, D.A.6
-
8
-
-
18844446972
-
-
Kawakami, M.; Byrne, K.; Khatri, B.; Mcleish, T. C. B.; Radford, S. E.; Smith, D. A. Langmuir 2005, 21, 4765-4772.
-
(2005)
Langmuir
, vol.21
, pp. 4765-4772
-
-
Kawakami, M.1
Byrne, K.2
Khatri, B.3
Mcleish, T.C.B.4
Radford, S.E.5
Smith, D.A.6
-
9
-
-
33745686052
-
-
Kawakami, M.; Byrne, K.; Brockwell, D. J.; Radford, S. E.; Smith, D. A. Biophys. J. 2006, 91, L16-L18.
-
(2006)
Biophys. J
, vol.91
-
-
Kawakami, M.1
Byrne, K.2
Brockwell, D.J.3
Radford, S.E.4
Smith, D.A.5
-
10
-
-
33947700979
-
-
Khatri, B. S.; Kawakami, M.; Byrne, K.; Smith, D. A.; McLeish, T. C. B. Biophys. J. 2007, 92, 1825-1835.
-
(2007)
Biophys. J
, vol.92
, pp. 1825-1835
-
-
Khatri, B.S.1
Kawakami, M.2
Byrne, K.3
Smith, D.A.4
McLeish, T.C.B.5
-
14
-
-
0038047197
-
-
Oxford University Press: Oxford, U.K
-
Guyon, E.; Hulin, J.; L.Petit,; Mitescu, C. Physical Hydrodynamics; Oxford University Press: Oxford, U.K., 2001.
-
(2001)
Physical Hydrodynamics
-
-
Guyon, E.1
Hulin, J.2
Petit, L.3
Mitescu, C.4
-
23
-
-
0006573347
-
-
9th ed, Dover: New York, Chapter 6 §6.3, pp
-
Abramowitz, M.; Stegun, I. A. E. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th ed.; Dover: New York, 1972; Chapter 6 (§6.3), pp 258-259.
-
(1972)
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables
, pp. 258-259
-
-
Abramowitz, M.1
Stegun, I.A.E.2
-
24
-
-
34748915243
-
-
The fact that the relaxation time of the modes is independent of mode number is not in contradiction with the concept of the internal friction and hence dynamic flexibility of a mode decreasing with curvature. As was shown in ref 10, the microscopic internal friction constant is controlled by an average hopping time, which is in general distinct to the relaxation time
-
The fact that the relaxation time of the modes is independent of mode number is not in contradiction with the concept of the internal friction and hence dynamic flexibility of a mode decreasing with curvature. As was shown in ref 10, the microscopic internal friction constant is controlled by an average hopping time, which is in general distinct to the relaxation time.
-
-
-
-
25
-
-
34748866066
-
-
The relationship, ζi- ≫ ζs, is not equivalent to the relationship, τi, ≫ τ κ, since there is a factor π2, which multiplies the ratio ζSR/κRin the definition of τR. SO for example, when τi/τR, 1, ζi,/ζs, π2 ∼ 10 and internal friction dominates the response.(26) The physics described is analogous to high-frequency models of Brownian motion22 or the skin-effect in conductors, where an oscillating influence can only penetrate a certain distance, due to the finite time of diffusion
-
22 or the skin-effect in conductors, where an oscillating influence can only penetrate a certain distance, due to the finite time of diffusion.
-
-
-
-
26
-
-
34748873871
-
-
This is also true for a Rouse chain eq 22, however, in this idealized case the internal friction is zero and the internal properties of the chain cannot be probed
-
This is also true for a Rouse chain (eq 22), however, in this idealized case the internal friction is zero and the internal properties of the chain cannot be probed.
-
-
-
|