메뉴 건너뛰기




Volumn 26, Issue 10, 2007, Pages 1025-1041

Motion planning for nonlinear symmetric distributed robotic formations

Author keywords

Distributed robot systems; Multiple mobile robot systems; Nonholonomic motion planning; Path planning

Indexed keywords

ALGORITHMS; COMPUTATION THEORY; COMPUTER SIMULATION; DIFFERENTIAL EQUATIONS; MOBILE ROBOTS;

EID: 34748872605     PISSN: 02783649     EISSN: 17413176     Source Type: Journal    
DOI: 10.1177/0278364907082097     Document Type: Article
Times cited : (24)

References (30)
  • 1
    • 0002062361 scopus 로고
    • Nonholonomic Reduction. Reports on Mathematical
    • Bates, L. and Sniatycki, J. (1993). Nonholonomic Reduction. Reports on Mathematical Physics, 32: 99 - 115.
    • (1993) Physics , vol.32 , pp. 99-115
    • Bates, L.1    Sniatycki, J.2
  • 4
    • 0032671069 scopus 로고    scopus 로고
    • Motion planning for cooperating mobile manipulators
    • Desai, J.P. and Kumar, V. (1999). Motion planning for cooperating mobile manipulators. Journal of Robotic Systems, 10: 557 - 579.
    • (1999) Journal of Robotic Systems , vol.10 , pp. 557-579
    • Desai, J.P.1    Kumar, V.2
  • 6
    • 4644317383 scopus 로고    scopus 로고
    • Information Flow and Cooperative Control of Vehicle Formations
    • Fax, J.A. and Murrray, R.M. (2004). Information Flow and Cooperative Control of Vehicle Formations. IEEE Transactions on Automatic Control, 49 (49). 1465 - 1476.
    • (2004) IEEE Transactions on Automatic Control , vol.49 , Issue.49 , pp. 1465-1476
    • Fax, J.A.1    Murrray, R.M.2
  • 7
    • 0036870095 scopus 로고    scopus 로고
    • MICA: A wireless Platform for Deeply Embedded Networks
    • Hill, J. and Culler, D. (2002). MICA: A wireless Platform for Deeply Embedded Networks. IEEE Micro, 22 (6). 12 - 24.
    • (2002) IEEE Micro , vol.22 , Issue.6 , pp. 12-24
    • Hill, J.1    Culler, D.2
  • 9
    • 33750479181 scopus 로고    scopus 로고
    • Bases for Lie algebras and a continuous CBH formula
    • V. Blondel and A. Megretski (eds). Princeton University Press
    • Kawski, M. (2004). Bases for Lie algebras and a continuous CBH formula. In Unsolved Problems in Mathematical Systems and Control Theory. V. Blondel and A. Megretski (eds). Princeton University Press, 97 - 102.
    • (2004) Unsolved Problems in Mathematical Systems and Control Theory , pp. 97-102
    • Kawski, M.1
  • 10
    • 0002147831 scopus 로고
    • A Differential Geometric Approach to Motion Planning
    • X. Li and J. F. Canny (eds). Kluwer, 270
    • Lafferriere, G. and Sussmann, H.J. (1993). A Differential Geometric Approach to Motion Planning. In Nonholonomic Motion Planning. X. Li and J. F. Canny (eds). Kluwer, 235 - 270.
    • (1993) Nonholonomic Motion Planning
    • Lafferriere, G.1    Sussmann, H.J.2
  • 11
    • 0003248684 scopus 로고    scopus 로고
    • Guideline in Nonholonomic Motion Planning for Mobile Robots
    • J.-P. Laumond (ed). Springer-Verlag.
    • Laumond, J.-P., Sekhavat, S. and Lamiraux, F. (1998). Guideline in Nonholonomic Motion Planning for Mobile Robots. In Robot Motion Planning and control. J.-P. Laumond (ed). Springer-Verlag.
    • (1998) Robot Motion Planning and Control
    • Laumond, J.-P.1    Sekhavat, S.2    Lamiraux, F.3
  • 18
    • 0347134481 scopus 로고    scopus 로고
    • Reduction and nonlinear controllability of symmetric distributed systems
    • McMickell, M.B. and Goodwine, B. (2003 b). Reduction and nonlinear controllability of symmetric distributed systems. International Journal of Control, 76 (18). 1809 - 1822.
    • (2003) International Journal of Control , vol.76 , Issue.18 , pp. 1809-1822
    • McMickell, M.B.1    Goodwine, B.2
  • 20
    • 0027590367 scopus 로고
    • Nonholonomic Motion Planning: Steering Using Sinusoids
    • Murray, R.M. and Sastry, S. (1993). Nonholonomic Motion Planning: Steering Using Sinusoids. IEEE Transactions on Automatic Control, 38 (5). 700 - 716.
    • (1993) IEEE Transactions on Automatic Control , vol.38 , Issue.5 , pp. 700-716
    • Murray, R.M.1    Sastry, S.2
  • 24
    • 0002942658 scopus 로고    scopus 로고
    • Optimal Trajectories for Nonholonomic Mobile Robots
    • Robot Motion Planning and Control J. P. Laumond (ed). Springer-Verlag.
    • Soures, P. and Boissonat, J.D. (1998). Optimal Trajectories for Nonholonomic Mobile Robots. In Robot Motion Planning and Control, J. P. Laumond (ed). Lecture Notes in Control and Information Sciences, 229, Springer-Verlag.
    • (1998) Lecture Notes in Control and Information Sciences
    • Soures, P.1    Boissonat, J.D.2
  • 26
    • 0037614030 scopus 로고    scopus 로고
    • Two New Methods for Motion Planning for Controllable Systems without Drift
    • Sussmann, H.J. (1991). Two New Methods for Motion Planning for Controllable Systems without Drift. European Control Conference, 1501-1506.
    • European Control Conference
    • Sussmann, H.J.1
  • 27
    • 0029394227 scopus 로고
    • Nonholonomic Control Systems: From steering to stabilization with sinusoids
    • Teel, A.R., Murray, R.M. and Walsh, G.C. (1995). Nonholonomic Control Systems: from steering to stabilization with sinusoids. International Journal of Control, 62 (4). 849 - 870.
    • (1995) International Journal of Control , vol.62 , Issue.4 , pp. 849-870
    • Teel, A.R.1    Murray, R.M.2    Walsh, G.C.3
  • 28
    • 0032645451 scopus 로고    scopus 로고
    • A cooperative hunting behavior by mobile robot troops
    • Yamaguchi, H. (1999). A cooperative hunting behavior by mobile robot troops. International Journal of Robotics Research, 18 (9). 931 - 940.
    • (1999) International Journal of Robotics Research , vol.18 , Issue.9 , pp. 931-940
    • Yamaguchi, H.1
  • 30
    • 0035975687 scopus 로고    scopus 로고
    • A distributed control scheme for multiple robotic vehicles to make group formations. Robotics and Autonomous
    • 147
    • Yamaguchi, H., Arai, T. and Beni, G. (2001). A distributed control scheme for multiple robotic vehicles to make group formations. Robotics and Autonomous Systems, 36: 125 - 147.
    • (2001) Systems , vol.36
    • Yamaguchi, H.1    Arai, T.2    Beni, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.