메뉴 건너뛰기




Volumn 6, Issue 5, 2007, Pages 761-765

New fully automatic fast registration method for 2D computed tomography images

Author keywords

Computed tomography; Correlation; Mono modal; Registration; Transformation

Indexed keywords

COMPUTERIZED TOMOGRAPHY; CORRELATION METHODS; EDGE DETECTION; FAST FOURIER TRANSFORMS; HUMAN COMPUTER INTERACTION; MATHEMATICAL TRANSFORMATIONS; PIXELS; TWO DIMENSIONAL;

EID: 34748869158     PISSN: 18125638     EISSN: 18125646     Source Type: Journal    
DOI: 10.3923/itj.2007.761.765     Document Type: Article
Times cited : (4)

References (12)
  • 4
    • 0036757946 scopus 로고    scopus 로고
    • The characterization of Gaussian operations and distillation of Gaussian States
    • Giedke, G.J. and I. Cirac, 2002. The characterization of Gaussian operations and distillation of Gaussian States. Phys. Rev., 66: 032316-032322.
    • (2002) Phys. Rev , vol.66 , pp. 032316-032322
    • Giedke, G.J.1    Cirac, I.2
  • 6
    • 0002029353 scopus 로고
    • The phase correlation image alignment method
    • Cybernetics Soc, pp
    • Kuglin, C.D. and D.C. Hines, 1975. The phase correlation image alignment method. Proc. Int. Conf. Cybernetics Soc., pp: 163-165.
    • (1975) Proc. Int. Conf , pp. 163-165
    • Kuglin, C.D.1    Hines, D.C.2
  • 7
    • 0032008619 scopus 로고    scopus 로고
    • A survey of medical image registration
    • Maintz,J.B. and M.A. Viergever, 1998. A survey of medical image registration. Med. Image Anal., 21: 1-36.
    • (1998) Med. Image Anal , vol.21 , pp. 1-36
    • Maintz, J.B.1    Viergever, M.A.2
  • 8
    • 0030212172 scopus 로고    scopus 로고
    • An FFT-based technique for translation, rotation and scale-invariant image registration
    • Reddy, B.S. and B.N. Chatterji, 1996. An FFT-based technique for translation, rotation and scale-invariant image registration. IEEE Trans. Image Processing, 8: 1266-1271.
    • (1996) IEEE Trans. Image Processing , vol.8 , pp. 1266-1271
    • Reddy, B.S.1    Chatterji, B.N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.