-
1
-
-
0345412697
-
A lattice problem in quantum NP
-
IEEE Computer Society
-
D. Aharonov and O. Regev. A lattice problem in quantum NP. In FOCS, pages 210-219. IEEE Computer Society, 2003.
-
(2003)
FOCS
, pp. 210-219
-
-
Aharonov, D.1
Regev, O.2
-
2
-
-
27344461174
-
Lattice problems in NP n coNP
-
D. Aharonov and O. Regev. Lattice problems in NP n coNP. J. ACM, 52(5):749-765, 2005.
-
(2005)
J. ACM
, vol.52
, Issue.5
, pp. 749-765
-
-
Aharonov, D.1
Regev, O.2
-
3
-
-
0029719917
-
Generating hard instances of lattice problems (extended abstract)
-
M. Ajtai. Generating hard instances of lattice problems (extended abstract). In STOC, pages 99-108, 1996.
-
(1996)
STOC
, pp. 99-108
-
-
Ajtai, M.1
-
4
-
-
0034826416
-
A sieve algorithm for the shortest lattice vector problem
-
M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice vector problem. In STOC, pages 601-610, 2001.
-
(2001)
STOC
, pp. 601-610
-
-
Ajtai, M.1
Kumar, R.2
Sivakumar, D.3
-
5
-
-
33748617126
-
Hardness of approximating the closest vector problem with pre-processing
-
IEEE Computer Society
-
M. Alekhnovich, S. Khot, G. Kindler, and N. K. Vishnoi. Hardness of approximating the closest vector problem with pre-processing. In FOCS, pages 216-225. IEEE Computer Society, 2005.
-
(2005)
FOCS
, pp. 216-225
-
-
Alekhnovich, M.1
Khot, S.2
Kindler, G.3
Vishnoi, N.K.4
-
6
-
-
51249173801
-
On Lovász' lattice reduction and the nearest lattice point problem
-
L. Babai. On Lovász' lattice reduction and the nearest lattice point problem. Combinatorica, 6(1):1-13, 1986.
-
(1986)
Combinatorica
, vol.6
, Issue.1
, pp. 1-13
-
-
Babai, L.1
-
7
-
-
0000303291
-
New bounds in some transference theorems in the geometry of numbers
-
W. Banaszczyk. New bounds in some transference theorems in the geometry of numbers. Mathematische Annalen, 296(4):625-635, 1993.
-
(1993)
Mathematische Annalen
, vol.296
, Issue.4
, pp. 625-635
-
-
Banaszczyk, W.1
-
9
-
-
0026853668
-
On the theory of average case complexity
-
S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the theory of average case complexity. J. Comput. Syst. Sci., 44(2):193-219, 1992.
-
(1992)
J. Comput. Syst. Sci
, vol.44
, Issue.2
, pp. 193-219
-
-
Ben-David, S.1
Chor, B.2
Goldreich, O.3
Luby, M.4
-
10
-
-
0032653013
-
On the complexity of computing short linearly independent vectors and short bases in a lattice
-
J. Blömer and J.-P. Seifert. On the complexity of computing short linearly independent vectors and short bases in a lattice. In STOC, pages 711-720, 1999.
-
(1999)
STOC
, pp. 711-720
-
-
Blömer, J.1
Seifert, J.-P.2
-
11
-
-
0037125666
-
∞ to within almost-polynomial factors is NP-hard
-
∞ to within almost-polynomial factors is NP-hard. Theor. Comput. Sci., 285(1):55-71, 2002.
-
(2002)
Theor. Comput. Sci
, vol.285
, Issue.1
, pp. 55-71
-
-
Dinur, I.1
-
12
-
-
0141655066
-
Approximating CVP to within almost-polynomial factors is NP-hard
-
I. Dinur, G. Kindler, R. Raz, and S. Safra. Approximating CVP to within almost-polynomial factors is NP-hard. Combinatorica, 23(2):205-243, 2003.
-
(2003)
Combinatorica
, vol.23
, Issue.2
, pp. 205-243
-
-
Dinur, I.1
Kindler, G.2
Raz, R.3
Safra, S.4
-
13
-
-
2942748673
-
The inapproximability of lattice and coding problems with preprocessing
-
U. Feige and D. Micciancio. The inapproximability of lattice and coding problems with preprocessing. J. Comput. Syst. ScL, 69(1):45-67, 2004.
-
(2004)
J. Comput. Syst. ScL
, vol.69
, Issue.1
, pp. 45-67
-
-
Feige, U.1
Micciancio, D.2
-
14
-
-
34748857920
-
-
O. Goldreich. Note available at http://www.wisdom.weizmann.ac.il/ ~odeoVp_lp.html.
-
O. Goldreich. Note available at http://www.wisdom.weizmann.ac.il/ ~odeoVp_lp.html.
-
-
-
-
15
-
-
0034205405
-
On the limits of non-approximability of lattice problems
-
O. Goldreich and S. Goldwasser. On the limits of non-approximability of lattice problems. J. Comput. Syst. Sci., 60(3):540-563, 2000.
-
(2000)
J. Comput. Syst. Sci
, vol.60
, Issue.3
, pp. 540-563
-
-
Goldreich, O.1
Goldwasser, S.2
-
16
-
-
0032613321
-
Approximating shortest lattice vectors is not harder than approximating closest lattice vectors
-
O. Goldreich, D. Micciancio, S. Safra, and J.-P. Seifert. Approximating shortest lattice vectors is not harder than approximating closest lattice vectors. Inf. Process. Lett., 71(2):55-61, 1999.
-
(1999)
Inf. Process. Lett
, vol.71
, Issue.2
, pp. 55-61
-
-
Goldreich, O.1
Micciancio, D.2
Safra, S.3
Seifert, J.-P.4
-
17
-
-
4944234593
-
The complexity of the covering radius problem on lattices and codes
-
IEEE Computer Society
-
V. Guruswami, D. Micciancio, and O. Regev. The complexity of the covering radius problem on lattices and codes. In IEEE Conference on Computational Complexity, pages 161-173. IEEE Computer Society, 2004.
-
(2004)
IEEE Conference on Computational Complexity
, pp. 161-173
-
-
Guruswami, V.1
Micciancio, D.2
Regev, O.3
-
18
-
-
35448997748
-
Tensor-based hardness of the shortest vector problem to within almost polynomial factors
-
I. Haviv and O. Regev. Tensor-based hardness of the shortest vector problem to within almost polynomial factors. In STOC, 2007.
-
(2007)
STOC
-
-
Haviv, I.1
Regev, O.2
-
19
-
-
27344453570
-
Hardness of approximating the shortest vector problem in lattices
-
S. Khot. Hardness of approximating the shortest vector problem in lattices. J. ACM, 52(5):789-808, 2005.
-
(2005)
J. ACM
, vol.52
, Issue.5
, pp. 789-808
-
-
Khot, S.1
-
20
-
-
34250244723
-
Factoring polynomials with rational coefficients
-
December
-
A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients. Mathematische Annalen, 261(4):515-534, December 1982.
-
(1982)
Mathematische Annalen
, vol.261
, Issue.4
, pp. 515-534
-
-
Lenstra, A.K.1
Lenstra, H.W.2
Lovász, L.3
-
21
-
-
0022663555
-
Average case complete problems
-
L. A. Levin. Average case complete problems. SIAM J. Comput, 15(1):285-286, 1986.
-
(1986)
SIAM J. Comput
, vol.15
, Issue.1
, pp. 285-286
-
-
Levin, L.A.1
-
23
-
-
33746342484
-
-
V. Lyubashevsky and D. Micciancio. Generalized compact knapsacks are collision resistant. In ICALP (2), 4052 of Lecture Notes in Computer Science, pages 144-155. Springer, 2006. Full version in ECCC Report TR05-142.
-
V. Lyubashevsky and D. Micciancio. Generalized compact knapsacks are collision resistant. In ICALP (2), volume 4052 of Lecture Notes in Computer Science, pages 144-155. Springer, 2006. Full version in ECCC Report TR05-142.
-
-
-
-
24
-
-
0009554539
-
Complexity of Lattice Problems: A cryptographic perspective
-
of, Kluwer Academic Publishers, Boston, Massachusetts
-
D. Micciancio and S. Goldwasser. Complexity of Lattice Problems: a cryptographic perspective, volume 671 of The Kluwer International Series in Engineering and Computer Science. Kluwer Academic Publishers, Boston, Massachusetts, 2002.
-
(2002)
The Kluwer International Series in Engineering and Computer Science
, vol.671
-
-
Micciancio, D.1
Goldwasser, S.2
-
25
-
-
17744363914
-
Worst-case to average-case reductions based on Gaussian measures
-
IEEE Computer Society
-
D. Micciancio and O. Regev. Worst-case to average-case reductions based on Gaussian measures. In FOCS, pages 372-381. IEEE Computer Society, 2004.
-
(2004)
FOCS
, pp. 372-381
-
-
Micciancio, D.1
Regev, O.2
-
26
-
-
35448980349
-
-
C. Peikert and A. Rosen. Lattices that admit logarithmic worst-case to average-case connection factors. In STOC, 2007. Full version in ECCC Report TR06-147.
-
C. Peikert and A. Rosen. Lattices that admit logarithmic worst-case to average-case connection factors. In STOC, 2007. Full version in ECCC Report TR06-147.
-
-
-
-
27
-
-
20444451186
-
New lattice-based cryptographic constructions
-
O. Regev. New lattice-based cryptographic constructions. J. ACM, 51(6):899-942, 2004.
-
(2004)
J. ACM
, vol.51
, Issue.6
, pp. 899-942
-
-
Regev, O.1
-
28
-
-
33745571012
-
On lattices, learning with errors, random linear codes, and cryptography
-
ACM
-
O. Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC, pages 84-93. ACM, 2005.
-
(2005)
STOC
, pp. 84-93
-
-
Regev, O.1
-
29
-
-
33748120317
-
Lattice problems and norm embeddings
-
ACM
-
O. Regev and R. Rosen. Lattice problems and norm embeddings. In STOC, pages 447-456. ACM, 2006.
-
(2006)
STOC
, pp. 447-456
-
-
Regev, O.1
Rosen, R.2
-
30
-
-
0023532388
-
A hierarchy of polynomial time lattice basis reduction algorithms
-
C-P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms. Theor. Comput. Sci., 53:201-224, 1987.
-
(1987)
Theor. Comput. Sci
, vol.53
, pp. 201-224
-
-
Schnorr, C.-P.1
|