-
1
-
-
24844433071
-
Hadamard products and Golden-Thompson type inequalities
-
Ando T. Hadamard products and Golden-Thompson type inequalities. Linear Algebra Appl. 241/243 (1996) 105-112
-
(1996)
Linear Algebra Appl.
, vol.241-243
, pp. 105-112
-
-
Ando, T.1
-
2
-
-
34548412123
-
Geometric means in a noval vector space structure on symmetric positive-definite matrices
-
Arsigny V., Fillard P., Pennec X., and Ayache N. Geometric means in a noval vector space structure on symmetric positive-definite matrices. SIAM.J. Matrix Anal. Appl. 29 (2006) 328-347
-
(2006)
SIAM.J. Matrix Anal. Appl.
, vol.29
, pp. 328-347
-
-
Arsigny, V.1
Fillard, P.2
Pennec, X.3
Ayache, N.4
-
5
-
-
84972570848
-
Convexity of the geodesic distance on spaces of positive operators
-
Corach G., Porta H., and Recht L. Convexity of the geodesic distance on spaces of positive operators. Illinois J. Math. 38 (1994) 87-94
-
(1994)
Illinois J. Math.
, vol.38
, pp. 87-94
-
-
Corach, G.1
Porta, H.2
Recht, L.3
-
6
-
-
0036462113
-
A Jordan-algebraic approach to potential-reduction algorithms
-
Faybusovich L. A Jordan-algebraic approach to potential-reduction algorithms. Math. Z. 239 (2002) 117-129
-
(2002)
Math. Z.
, vol.239
, pp. 117-129
-
-
Faybusovich, L.1
-
7
-
-
0039176122
-
A new positive definite geometric mean of two positive definite matrices
-
Fiedler M., and Pták V. A new positive definite geometric mean of two positive definite matrices. Linear Algebra Appl. 251 (1997) 1-20
-
(1997)
Linear Algebra Appl.
, vol.251
, pp. 1-20
-
-
Fiedler, M.1
Pták, V.2
-
8
-
-
0042309402
-
A geometric mean in the Furuta inequality
-
Fujii M., and Nakamoto R. A geometric mean in the Furuta inequality. Sci. Math. Jpn. 55 (2002) 615-621
-
(2002)
Sci. Math. Jpn.
, vol.55
, pp. 615-621
-
-
Fujii, M.1
Nakamoto, R.2
-
9
-
-
11144258658
-
Convergence of logarithmic trace inequalities via generalized Lie-Trotter formulae
-
Furuta T. Convergence of logarithmic trace inequalities via generalized Lie-Trotter formulae. Linear Algebra Appl. 396 (2005) 353-372
-
(2005)
Linear Algebra Appl.
, vol.396
, pp. 353-372
-
-
Furuta, T.1
-
10
-
-
2442597136
-
The Golden-Thompson trace inequality is complemented
-
Hiai F., and Petz D. The Golden-Thompson trace inequality is complemented. Linear Algebra Appl. 181 (1993) 153-185
-
(1993)
Linear Algebra Appl.
, vol.181
, pp. 153-185
-
-
Hiai, F.1
Petz, D.2
-
11
-
-
2342654959
-
Very basic Lie theory
-
Howe R. Very basic Lie theory. Amer. Math. Monthly 90 (1983) 600-624
-
(1983)
Amer. Math. Monthly
, vol.90
, pp. 600-624
-
-
Howe, R.1
-
12
-
-
22944439423
-
A differential geometric approach to the geometric mean of symmetric positive-definite matrices
-
Moakher M. A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 26 (2005) 735-747
-
(2005)
SIAM J. Matrix Anal. Appl.
, vol.26
, pp. 735-747
-
-
Moakher, M.1
-
13
-
-
33645812768
-
On the averaging of symmetric positive-definite tensors
-
Moakher M. On the averaging of symmetric positive-definite tensors. J. Elasticity 82 (2006) 273-296
-
(2006)
J. Elasticity
, vol.82
, pp. 273-296
-
-
Moakher, M.1
-
14
-
-
0001338184
-
Hilbert's projective metric and iterated nonlinear maps
-
Nussbaum R.D. Hilbert's projective metric and iterated nonlinear maps. Memoirs of Amer. Math. Soc. 391 (1988)
-
(1988)
Memoirs of Amer. Math. Soc.
, vol.391
-
-
Nussbaum, R.D.1
-
15
-
-
0040792851
-
Upper and lower bounds for the arithmetic-geometric-harmonic means of positive definite matrices
-
Sagae M., and Tanabe K. Upper and lower bounds for the arithmetic-geometric-harmonic means of positive definite matrices. Linear and Multilinear Algebras 37 (1994) 279-282
-
(1994)
Linear and Multilinear Algebras
, vol.37
, pp. 279-282
-
-
Sagae, M.1
Tanabe, K.2
-
16
-
-
84966219504
-
On certain contraction mappings in a partially ordered vector space
-
Thompson A.C. On certain contraction mappings in a partially ordered vector space. Proc. Amer. Math. Soc. 14 (1963) 438-443
-
(1963)
Proc. Amer. Math. Soc.
, vol.14
, pp. 438-443
-
-
Thompson, A.C.1
|