-
1
-
-
0000710299
-
Queries and concept learning
-
April
-
D. Angluin. Queries and concept learning. Machine Learning, 2(4):319-342, April 1988.
-
(1988)
Machine Learning
, vol.2
, Issue.4
, pp. 319-342
-
-
Angluin, D.1
-
2
-
-
0000492326
-
Learning from noisy examples
-
D. Angluin and P. Laird. Learning from noisy examples. Machine Learning, 2(4):343-370, 1988.
-
(1988)
Machine Learning
, vol.2
, Issue.4
, pp. 343-370
-
-
Angluin, D.1
Laird, P.2
-
3
-
-
24144453496
-
Noise-tolerant learning, the parity problem, and the statistical query model
-
A. Blum, A. Kalai, and H. Wasserman. Noise-tolerant learning, the parity problem, and the statistical query model. Journal of the ACM, pages 506-519, 2003.
-
(2003)
Journal of the ACM
, pp. 506-519
-
-
Blum, A.1
Kalai, A.2
Wasserman, H.3
-
4
-
-
0031620208
-
Combining labeled and unlabeled data with co-training
-
A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In Proc. of COLT-98, pages 92-100, 1998.
-
(1998)
Proc. of COLT-98
, pp. 92-100
-
-
Blum, A.1
Mitchell, T.2
-
5
-
-
0000046054
-
Identifying mislabeled training data
-
C. E. Brodley and M. Friedl. Identifying mislabeled training data. JAIR, 11:131-167, 1999.
-
(1999)
JAIR
, vol.11
, pp. 131-167
-
-
Brodley, C.E.1
Friedl, M.2
-
6
-
-
0028424239
-
Improving generalization with active learning
-
D. Cohn, L. Atlas, and R. Ladner. Improving generalization with active learning. Machine Learning, 15(2):201-221, 1994.
-
(1994)
Machine Learning
, vol.15
, Issue.2
, pp. 201-221
-
-
Cohn, D.1
Atlas, L.2
Ladner, R.3
-
8
-
-
0002629270
-
Maximum-likelihood from, incomplete data via the em algorithm
-
A. Dempster, N. Laird, and D. Rubin. Maximum-likelihood from, incomplete data via the em algorithm. Journal of the Royal Statistical Society, Series B 39:1-38, 1977.
-
(1977)
Journal of the Royal Statistical Society, Series B
, vol.39
, pp. 1-38
-
-
Dempster, A.1
Laird, N.2
Rubin, D.3
-
9
-
-
33746043801
-
Automatically classifying emails into activities
-
M. Dredze, T. Lau, and N. Kushmerick. Automatically classifying emails into activities. In Proc. of IUI-06, pages 70-77, 2006.
-
(2006)
Proc. of IUI-06
, pp. 70-77
-
-
Dredze, M.1
Lau, T.2
Kushmerick, N.3
-
10
-
-
0031209604
-
Selective sampling using the query by committee algorithm
-
Y. Freund, H. Seung, E. Shamir, and N. Tishby. Selective sampling using the query by committee algorithm. Machine Learning, 28:133-168, 1997.
-
(1997)
Machine Learning
, vol.28
, pp. 133-168
-
-
Freund, Y.1
Seung, H.2
Shamir, E.3
Tishby, N.4
-
11
-
-
0001670678
-
The lumiere project: Bayesian user modeling for inferring the goals and needs of software users
-
E. Horvitz, J. Breese, D. Heckerman, D. Hovel, and K. Rommelse. The lumiere project: Bayesian user modeling for inferring the goals and needs of software users. In UAI-98, pages 256-265, 1998.
-
(1998)
UAI-98
, pp. 256-265
-
-
Horvitz, E.1
Breese, J.2
Heckerman, D.3
Hovel, D.4
Rommelse, K.5
-
12
-
-
0002561422
-
Attention-sensitive alerting
-
E. Horvitz, A. Jacobs, and D. Hovel. Attention-sensitive alerting. In UAI-99, pages 305-313, 1999.
-
(1999)
UAI-99
, pp. 305-313
-
-
Horvitz, E.1
Jacobs, A.2
Hovel, D.3
-
13
-
-
18844386512
-
Learning and reasoning about interruption
-
E. Horvitz, A. Jacobs, and D. Hovel. Learning and reasoning about interruption. In Proc. of ICMI-03, pages 20-27, 2003.
-
(2003)
Proc. of ICMI-03
, pp. 20-27
-
-
Horvitz, E.1
Jacobs, A.2
Hovel, D.3
-
14
-
-
0001938951
-
Transductive inference for text classification using support vector machines
-
T. Joachims. Transductive inference for text classification using support vector machines. In Proc. of ICML-99, pages 200-209, 1999.
-
(1999)
Proc. of ICML-99
, pp. 200-209
-
-
Joachims, T.1
-
15
-
-
0038375550
-
UMEA: Translating interaction histories into project contexts
-
V. Kaptelinin. UMEA: translating interaction histories into project contexts. In SIGCHI, pages 353-360, 2003.
-
(2003)
SIGCHI
, pp. 353-360
-
-
Kaptelinin, V.1
-
16
-
-
0032202014
-
Efficient noise-tolerant learning from statistical queries
-
M. Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM, pages 983-1006, 1998.
-
(1998)
Journal of the ACM
, pp. 983-1006
-
-
Kearns, M.1
-
17
-
-
33644608450
-
Automated email activity management: An unsupervised learning approach
-
N. Kushmerick and T. Lau. Automated email activity management: an unsupervised learning approach. In Proc. of IUI-05, pages 67-74, 2005.
-
(2005)
Proc. of IUI-05
, pp. 67-74
-
-
Kushmerick, N.1
Lau, T.2
-
18
-
-
85013879626
-
A sequential algorithm for training text classifiers
-
D. Lewis and W. Gale. A sequential algorithm for training text classifiers. In Proc. of SIGIR-94, pages 3-12, 1994.
-
(1994)
Proc. of SIGIR-94
, pp. 3-12
-
-
Lewis, D.1
Gale, W.2
-
19
-
-
0000314722
-
Employing EM in poolbased active learning for text classification
-
A. McCallum and K. Nigam. Employing EM in poolbased active learning for text classification. In Proc.of ICML-98, pages 350-358, 1998.
-
(1998)
Proc.of ICML-98
, pp. 350-358
-
-
McCallum, A.1
Nigam, K.2
-
20
-
-
34648878629
-
Extracting knowledge about users' activities from raw workstation contents
-
T. M. Mitchell, S. H. Wang, Y. Huang, and A. Cheyer. Extracting knowledge about users' activities from raw workstation contents. In Proc.of AAAI-06, 2006.
-
(2006)
Proc.of AAAI-06
-
-
Mitchell, T.M.1
Wang, S.H.2
Huang, Y.3
Cheyer, A.4
-
21
-
-
3242788638
-
Active + semisupervised learning = robust multi-view learning
-
I. Muslea, S. Minton, and C. Knoblock. Active + semisupervised learning = robust multi-view learning. In Proc.of ICML-02, pages 435-442, 2002.
-
(2002)
Proc.of ICML-02
, pp. 435-442
-
-
Muslea, I.1
Minton, S.2
Knoblock, C.3
-
22
-
-
85136905861
-
Analyzing the effectiveness and applicability of co-training
-
K. Nigam and R. Ghani. Analyzing the effectiveness and applicability of co-training. In Proc. of CIKM-00, pages 86-93, 2000.
-
(2000)
Proc. of CIKM-00
, pp. 86-93
-
-
Nigam, K.1
Ghani, R.2
-
23
-
-
0033886806
-
Text classification from labeled and unlabeled documents using EM
-
K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Text classification from labeled and unlabeled documents using EM. Machine Learning, 39(2/3): 103-134, 2000.
-
(2000)
Machine Learning
, vol.39
, Issue.2-3
, pp. 103-134
-
-
Nigam, K.1
McCallum, A.2
Thrun, S.3
Mitchell, T.4
-
24
-
-
19944409414
-
The probabilistic activity toolkit: Towards enabling activity-aware computer interfaces
-
Technical Report IRS-TR-03-013, Intel Research Lab, Seattle, WA
-
M. Philipose, K. Fishkin, M. Perkowitz, D. Patterson, and D. Hahnel. The probabilistic activity toolkit: Towards enabling activity-aware computer interfaces. Technical Report IRS-TR-03-013, Intel Research Lab, Seattle, WA, 2003.
-
(2003)
-
-
Philipose, M.1
Fishkin, K.2
Perkowitz, M.3
Patterson, D.4
Hahnel, D.5
-
25
-
-
2142727946
-
Limitations of co-training for natural language learning from large datasets
-
D. Pierce and C. Cardie. Limitations of co-training for natural language learning from large datasets. In Proc. of EMNLP, pages 1-9, 2001.
-
(2001)
Proc. of EMNLP
, pp. 1-9
-
-
Pierce, D.1
Cardie, C.2
-
26
-
-
84948481845
-
An algorithm for suffix stripping
-
M. Porter. An algorithm for suffix stripping. Program, 14(3):130-137, 1980.
-
(1980)
Program
, vol.14
, Issue.3
, pp. 130-137
-
-
Porter, M.1
-
27
-
-
1242285091
-
Active sampling for class probability estimation and ranking
-
M. Saar-Tsechansky and F. Provost. Active sampling for class probability estimation and ranking. Machine Learning, 54(2):153-178, 1994.
-
(1994)
Machine Learning
, vol.54
, Issue.2
, pp. 153-178
-
-
Saar-Tsechansky, M.1
Provost, F.2
-
28
-
-
33746089186
-
A hybrid learning system for recognizing user tasks from desktop activities and email messages
-
J. Shen, L. Li, T. Dietterich, and J. Herlocker. A hybrid learning system for recognizing user tasks from desktop activities and email messages. In Proc. of IUI-06, pages 86-92, 2006.
-
(2006)
Proc. of IUI-06
, pp. 86-92
-
-
Shen, J.1
Li, L.2
Dietterich, T.3
Herlocker, J.4
-
29
-
-
0003007938
-
Support vector machine active learning with applications to text classification
-
S. Tong and D. Koller. Support vector machine active learning with applications to text classification. In Proc. of ICML-00, pages 999-1006, 2000.
-
(2000)
Proc. of ICML-00
, pp. 999-1006
-
-
Tong, S.1
Koller, D.2
|