-
1
-
-
85037918238
-
A tourist guide through tree-width
-
Bodlaender H.L. A tourist guide through tree-width. Acta Cybernet. 11 (1993) 1-23
-
(1993)
Acta Cybernet.
, vol.11
, pp. 1-23
-
-
Bodlaender, H.L.1
-
2
-
-
0002981945
-
A partial k-arboretum of graphs with bounded tree-width
-
Bodlaender H.L. A partial k-arboretum of graphs with bounded tree-width. Theoretical Comput. Sci. 209 (1998) 1-45
-
(1998)
Theoretical Comput. Sci.
, vol.209
, pp. 1-45
-
-
Bodlaender, H.L.1
-
3
-
-
84896754098
-
-
D.G. Corneil, M. Habib, J.M. Lanlignel, B. Reed, U. Rotics, Polynomial time recognition of clique-width ≤ 3 graphs, LATIN'00: Latin American Theoretical Informatics, vol. 1776, 2000, pp. 126-134.
-
-
-
-
4
-
-
24344452559
-
On the relationship between clique-width and tree-width
-
Corneil D.G., and Rotics U. On the relationship between clique-width and tree-width. SSIAM J. Comput. 34 (2005) 825-847
-
(2005)
SSIAM J. Comput.
, vol.34
, pp. 825-847
-
-
Corneil, D.G.1
Rotics, U.2
-
5
-
-
0000090439
-
The expression of graph properties and graph transformations in monadic second order logic
-
Rozenberg G. (Ed), World Scientific, Singapore
-
Courcelle B. The expression of graph properties and graph transformations in monadic second order logic. In: Rozenberg G. (Ed). Handbook of Graph Grammars and Computing by Graph Transformations (1997), World Scientific, Singapore 313-400
-
(1997)
Handbook of Graph Grammars and Computing by Graph Transformations
, pp. 313-400
-
-
Courcelle, B.1
-
6
-
-
0002015577
-
Upper bounds to the clique-width of graphs
-
Courcelle B., and Olariu S. Upper bounds to the clique-width of graphs. Discrete Appl. Math. 101 (2000) 77-114
-
(2000)
Discrete Appl. Math.
, vol.101
, pp. 77-114
-
-
Courcelle, B.1
Olariu, S.2
-
7
-
-
33751429952
-
Vertex-minors, monadic second-order logic and a conjecture by Seese
-
Courcelle B., and Oum S. Vertex-minors, monadic second-order logic and a conjecture by Seese. J. Combin. Theory Ser. B 97 (2006) 91-126
-
(2006)
J. Combin. Theory Ser. B
, vol.97
, pp. 91-126
-
-
Courcelle, B.1
Oum, S.2
-
8
-
-
33748114479
-
Clique-width minimization is NP-Hard
-
Seattle, ACM Press, New York
-
Fellows M., Rosamond F.A., Rotics U., and Szeider S. Clique-width minimization is NP-Hard. Proceedings of STOC'06: 38th ACM Symposium on Theory of Computing. Seattle (2006), ACM Press, New York 354-362
-
(2006)
Proceedings of STOC'06: 38th ACM Symposium on Theory of Computing
, pp. 354-362
-
-
Fellows, M.1
Rosamond, F.A.2
Rotics, U.3
Szeider, S.4
-
9
-
-
33744946823
-
-
S. Oum, Approximating rank-width and clique-width quickly, in: Graph-Theoretic Concepts in Computer Science, Metz, Lecture Notes in Computer Science, vol. 3787, Springer, Berlin, 2005, pp. 49-58.
-
-
-
-
10
-
-
23244468510
-
Rank-width and vertex-minors
-
Oum S. Rank-width and vertex-minors. J. Combin. Theory Ser. B 95 (2006) 79-100
-
(2006)
J. Combin. Theory Ser. B
, vol.95
, pp. 79-100
-
-
Oum, S.1
-
11
-
-
34648832355
-
-
S. Oum, Rank-width is less than or equal to branch-width, 2006, submitted for publication.
-
-
-
-
12
-
-
32544455938
-
Approximating clique-width and branch-width
-
Oum S., and Seymour P. Approximating clique-width and branch-width. J. Combin. Theory Ser. B 96 (2006) 514-528
-
(2006)
J. Combin. Theory Ser. B
, vol.96
, pp. 514-528
-
-
Oum, S.1
Seymour, P.2
-
13
-
-
0002856269
-
Graph minors V: excluding a planar graph
-
Robertson N., and Seymour P. Graph minors V: excluding a planar graph. J. Combin. Theory (B) 41 (1986) 92-114
-
(1986)
J. Combin. Theory (B)
, vol.41
, pp. 92-114
-
-
Robertson, N.1
Seymour, P.2
-
14
-
-
0001227241
-
Graphs minors X: obstructions to tree-decompositions
-
Robertson N., and Seymour P. Graphs minors X: obstructions to tree-decompositions. J. Combin. Theory (B) 52 (1991) 153-190
-
(1991)
J. Combin. Theory (B)
, vol.52
, pp. 153-190
-
-
Robertson, N.1
Seymour, P.2
-
15
-
-
0002848005
-
Graphs minors XIII: the disjoint paths problem
-
Robertson N., and Seymour P. Graphs minors XIII: the disjoint paths problem. J. Combin. Theory (B) 63 (1995) 65-110
-
(1995)
J. Combin. Theory (B)
, vol.63
, pp. 65-110
-
-
Robertson, N.1
Seymour, P.2
-
17
-
-
85034428662
-
-
D. Seese, Tree-partite graphs and the complexity of algorithms, in: Proceedings of the International Conference on Fundamentals of Computation Theory, Lecture Notes in Computer Science, vol. 199, Springer, Berlin, 1985, pp. 412-421.
-
-
-
|