-
2
-
-
0027201526
-
Optimal experimental designs for properties of a compartmental model
-
Atkinson, A. C., Chaloner, K., Herzberg, A. M., Juritz, J. (1993). Optimal experimental designs for properties of a compartmental model. Biometrics 49:325-337.
-
(1993)
Biometrics
, vol.49
, pp. 325-337
-
-
Atkinson, A.C.1
Chaloner, K.2
Herzberg, A.M.3
Juritz, J.4
-
3
-
-
0025610077
-
Estimating integrals using quadrature methods with an application in pharmacokinetics
-
Bailer, A. J., Piegorsch, W. W. (1990). Estimating integrals using quadrature methods with an application in pharmacokinetics. Biometrics 46(4):1201-1211.
-
(1990)
Biometrics
, vol.46
, Issue.4
, pp. 1201-1211
-
-
Bailer, A.J.1
Piegorsch, W.W.2
-
4
-
-
0003747347
-
-
NONMEM Project Group. San Francisco: University of California
-
Beal, S. L., Sheiner, L. B. (1992). NONMEM User's Guide. NONMEM Project Group. San Francisco: University of California.
-
(1992)
NONMEM User's Guide
-
-
Beal, S.L.1
Sheiner, L.B.2
-
5
-
-
0018155445
-
Critical evaluation of the potential error in pharmacokinetic studies of using the linear trapezoidal rule method for the calculation of the area under the plasma level-time curve
-
Chiou, W. L. (1978). Critical evaluation of the potential error in pharmacokinetic studies of using the linear trapezoidal rule method for the calculation of the area under the plasma level-time curve. J. Pharmacokinet. Biopharm. 6(6):539-546.
-
(1978)
J. Pharmacokinet. Biopharm
, vol.6
, Issue.6
, pp. 539-546
-
-
Chiou, W.L.1
-
7
-
-
0001049212
-
Optimum allocation in linear regression theory
-
Elfving, G. (1952). Optimum allocation in linear regression theory. Ann. Math. Stat. 23:255-262.
-
(1952)
Ann. Math. Stat
, vol.23
, pp. 255-262
-
-
Elfving, G.1
-
10
-
-
33750890600
-
Response driven designs in drug development
-
Wong, W. K, Berger, M. P. F, eds, Chichester: Wiley, pp
-
Fedorov, V., Leonov, S. (2005). Response driven designs in drug development. In: Wong, W. K., Berger, M. P. F., eds. Applied Optimal Designs. Chichester: Wiley, pp. 103-136.
-
(2005)
Applied Optimal Designs
, pp. 103-136
-
-
Fedorov, V.1
Leonov, S.2
-
11
-
-
34548834295
-
-
Fedorov, V., Leonov, S. (2006). Estimation of Population PK Measures: Selection of Sampling Grids. GlaxoSmithKline Pharmaceuticals, BDS Technical Report 2006-02. Available onlie at: http://www.biometrics.com/downloads/ TR_2006_02.pdf
-
Fedorov, V., Leonov, S. (2006). Estimation of Population PK Measures: Selection of Sampling Grids. GlaxoSmithKline Pharmaceuticals, BDS Technical Report 2006-02. Available onlie at: http://www.biometrics.com/downloads/ TR_2006_02.pdf
-
-
-
-
12
-
-
0036658556
-
Design of experiments with unknown parameters in variance
-
Fedorov, V. V., Gagnon, R. C., Leonov, S. L. (2002). Design of experiments with unknown parameters in variance. Appl. Stoch. Mod. Bus. Ind. 18:207-218.
-
(2002)
Appl. Stoch. Mod. Bus. Ind
, vol.18
, pp. 207-218
-
-
Fedorov, V.V.1
Gagnon, R.C.2
Leonov, S.L.3
-
14
-
-
0031713841
-
Estimation of confidence intervals for area under the curve from destructively obtained pharmacokinetic data
-
Gagnon, R. C., Peterson, J. J. (1998). Estimation of confidence intervals for area under the curve from destructively obtained pharmacokinetic data. J. Pharmacokinet. Biopharm. 26(1):87-102.
-
(1998)
J. Pharmacokinet. Biopharm
, vol.26
, Issue.1
, pp. 87-102
-
-
Gagnon, R.C.1
Peterson, J.J.2
-
15
-
-
12344327791
-
Optimal population designs for PK models with serial sampling
-
Gagnon, R., Leonov, S. (2005). Optimal population designs for PK models with serial sampling. J. Biopharm. Stat. 15(1):143-163.
-
(2005)
J. Biopharm. Stat
, vol.15
, Issue.1
, pp. 143-163
-
-
Gagnon, R.1
Leonov, S.2
-
18
-
-
0033995308
-
Why are pharmacokinetic data summarized by arithmetic means?
-
Julious, S. A., Debarnot, C. A. M. (2000). Why are pharmacokinetic data summarized by arithmetic means? J. Biopharm. Stat. 10(1):55-71.
-
(2000)
J. Biopharm. Stat
, vol.10
, Issue.1
, pp. 55-71
-
-
Julious, S.A.1
Debarnot, C.A.M.2
-
20
-
-
0030949860
-
Common non-compartmental pharmacokinetic variables: Are they normally or log-normally distributed?
-
Lacey, L. F., Keene, O. N., Pritchard, J. F., Bye, A. (1997). Common non-compartmental pharmacokinetic variables: are they normally or log-normally distributed? J. Biopharm. Stat. 7(1):171-178.
-
(1997)
J. Biopharm. Stat
, vol.7
, Issue.1
, pp. 171-178
-
-
Lacey, L.F.1
Keene, O.N.2
Pritchard, J.F.3
Bye, A.4
-
23
-
-
0000963178
-
Optimal design in random-effects regression models
-
Mentré, F., Mallet, A., Baccar, D. (1997). Optimal design in random-effects regression models. Biometrika 84(2):429-442.
-
(1997)
Biometrika
, vol.84
, Issue.2
, pp. 429-442
-
-
Mentré, F.1
Mallet, A.2
Baccar, D.3
-
24
-
-
0029782843
-
The variance of a better AUC estimator for sparse, destructive sampling in toxicokinetics
-
Nedelman, J. R., Gibiansky, E. (1996). The variance of a better AUC estimator for sparse, destructive sampling in toxicokinetics. J. Pharm. Sciences 85(8):884-886.
-
(1996)
J. Pharm. Sciences
, vol.85
, Issue.8
, pp. 884-886
-
-
Nedelman, J.R.1
Gibiansky, E.2
-
25
-
-
0027052236
-
Optmimum numerical integration methods for estimation of area-under-the-curve (AUC) and area-under-the-moment-curve (AUMC)
-
Purves, R. D. (1992). Optmimum numerical integration methods for estimation of area-under-the-curve (AUC) and area-under-the-moment-curve (AUMC). J. Pharmacokinet. Biopharm. 20(3):211-226.
-
(1992)
J. Pharmacokinet. Biopharm
, vol.20
, Issue.3
, pp. 211-226
-
-
Purves, R.D.1
-
26
-
-
0037278847
-
Further developments of the Fisher information matrix in nonlinear mixed effects models with evaluation in population pharmacokinetics
-
Retout, S., Mentré, F. (2003). Further developments of the Fisher information matrix in nonlinear mixed effects models with evaluation in population pharmacokinetics. J. Biopharm. Stat. 13(2):209-227.
-
(2003)
J. Biopharm. Stat
, vol.13
, Issue.2
, pp. 209-227
-
-
Retout, S.1
Mentré, F.2
-
29
-
-
0016030726
-
Spline functions in data analysis
-
Wald, S. (1974). Spline functions in data analysis. Technometrics 16(1):1-11.
-
(1974)
Technometrics
, vol.16
, Issue.1
, pp. 1-11
-
-
Wald, S.1
-
30
-
-
0017884783
-
A comparison of numerical integrating algorithms by trapezoidal, Lagrange, and spline approximation
-
Yeh, K. C., Kwan, K. C. (1978). A comparison of numerical integrating algorithms by trapezoidal, Lagrange, and spline approximation. J. Pharmacokinet. Biopharm. 6(1):79-98.
-
(1978)
J. Pharmacokinet. Biopharm
, vol.6
, Issue.1
, pp. 79-98
-
-
Yeh, K.C.1
Kwan, K.C.2
|