-
1
-
-
85032751540
-
Splitting the unit delay. Tools for fractional delay filter design
-
Jan
-
T. Laakso, V. Valimaki, M. Karjalainen, and U. K. Laine, "Splitting the unit delay. Tools for fractional delay filter design," IEEE Signal Process. Mag., vol. 13, no. 1, pp. 30-80, Jan. 1996.
-
(1996)
IEEE Signal Process. Mag
, vol.13
, Issue.1
, pp. 30-80
-
-
Laakso, T.1
Valimaki, V.2
Karjalainen, M.3
Laine, U.K.4
-
2
-
-
0142123184
-
An efficient design of a variable fractional delay filter using a first-order differentiator
-
Oct
-
S. C. Pei and C. C. Tseng, "An efficient design of a variable fractional delay filter using a first-order differentiator," IEEE Signal Process. Lett., vol. 10, no. 10, pp. 307-310, Oct. 2003.
-
(2003)
IEEE Signal Process. Lett
, vol.10
, Issue.10
, pp. 307-310
-
-
Pei, S.C.1
Tseng, C.C.2
-
3
-
-
4744362974
-
Closed-form design of all-pass fractional delay
-
Oct
-
S. C. Pei and P. H. Wang, "Closed-form design of all-pass fractional delay," IEEE Signal Process. Lett., vol. 11, no. 10, pp. 788-791, Oct. 2004.
-
(2004)
IEEE Signal Process. Lett
, vol.11
, Issue.10
, pp. 788-791
-
-
Pei, S.C.1
Wang, P.H.2
-
4
-
-
0036842861
-
Reconstruction of nonuniformly sampled bandlimited signals by means of digital fractional delay filters
-
Nov
-
H. Johansson and P. Lowenborg, "Reconstruction of nonuniformly sampled bandlimited signals by means of digital fractional delay filters," IEEE Trans. Signal Process., vol. 50, no. 11, pp. 2757-2767, Nov. 2002.
-
(2002)
IEEE Trans. Signal Process
, vol.50
, Issue.11
, pp. 2757-2767
-
-
Johansson, H.1
Lowenborg, P.2
-
5
-
-
33645508089
-
Digital integrator design using Simpson rule and fractional delay filter
-
Feb
-
C. C. Tseng, "Digital integrator design using Simpson rule and fractional delay filter," Proc. Inst. Elect. Eng., Vis., Image, Signal Process., vol. 153, no. 1, pp. 79-85, Feb. 2006.
-
(2006)
Proc. Inst. Elect. Eng., Vis., Image, Signal Process
, vol.153
, Issue.1
, pp. 79-85
-
-
Tseng, C.C.1
-
6
-
-
27644509785
-
Digital differentiator design using fractional delay filter and limit computation
-
Oct
-
C. C. Tseng, "Digital differentiator design using fractional delay filter and limit computation," IEEE Trans. Circuits Syst. I, vol. 52, no. 10, pp. 2248-2259, Oct. 2005.
-
(2005)
IEEE Trans. Circuits Syst. I
, vol.52
, Issue.10
, pp. 2248-2259
-
-
Tseng, C.C.1
-
7
-
-
0027541354
-
B-spline signal processing. I. Theory
-
Feb
-
M. Unser, A. Aldroubi, and M. Eden, "B-spline signal processing. I. Theory," IEEE Trans. Signal Process., vol. 41, no. 2, pp. 821-833, Feb. 1993.
-
(1993)
IEEE Trans. Signal Process
, vol.41
, Issue.2
, pp. 821-833
-
-
Unser, M.1
Aldroubi, A.2
Eden, M.3
-
8
-
-
0027542457
-
B-spline signal processing. II. Efficiency design and applications
-
Feb
-
M. Unser, A. Aldroubi, and M. Eden, "B-spline signal processing. II. Efficiency design and applications," IEEE Trans. Signal Process., vol. 41, no. 2, pp. 834-848, Feb. 1993.
-
(1993)
IEEE Trans. Signal Process
, vol.41
, Issue.2
, pp. 834-848
-
-
Unser, M.1
Aldroubi, A.2
Eden, M.3
-
10
-
-
0026743698
-
Polynomial spline approximations: Filter design and asymptotic equivalence with Shannon's sampling theorem
-
Jan
-
M. Unser, A. Aldroubi, and M. Eden, "Polynomial spline approximations: Filter design and asymptotic equivalence with Shannon's sampling theorem," IEEE Trans. Inf. Theory, vol. 38, no. 1, pp. 95-103, Jan. 1992.
-
(1992)
IEEE Trans. Inf. Theory
, vol.38
, Issue.1
, pp. 95-103
-
-
Unser, M.1
Aldroubi, A.2
Eden, M.3
-
11
-
-
33847639714
-
Fractional delay filter based on the B-spline transform
-
Feb
-
J. T. Olkkonen and H. Olkkonen, "Fractional delay filter based on the B-spline transform," IEEE Signal Process. Lett., vol. 14, no. 2, pp. 97-100, Feb. 2007.
-
(2007)
IEEE Signal Process. Lett
, vol.14
, Issue.2
, pp. 97-100
-
-
Olkkonen, J.T.1
Olkkonen, H.2
-
12
-
-
0002308457
-
Contribution to the problem of approximation of equidistant data by analytic functions
-
I. J. Schoenberg, "Contribution to the problem of approximation of equidistant data by analytic functions," Quart. Appl. Math., vol. 4, pp. 45-99, 1964.
-
(1964)
Quart. Appl. Math
, vol.4
, pp. 45-99
-
-
Schoenberg, I.J.1
-
13
-
-
0020335520
-
Digital low-pass differentiation for biological signal processing
-
Oct
-
S. Usui and I. Amidror, "Digital low-pass differentiation for biological signal processing," IEEE Trans. Biomed. Eng., vol. BME-29, no. 10, pp. 686-893, Oct. 1982.
-
(1982)
IEEE Trans. Biomed. Eng
, vol.BME-29
, Issue.10
, pp. 686-893
-
-
Usui, S.1
Amidror, I.2
-
14
-
-
0019654284
-
Cubic convolution interpolation for digital image processing
-
Dec
-
R. G. Keys, "Cubic convolution interpolation for digital image processing," IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-29, no. 6, pp. 1153-1160, Dec. 1981.
-
(1981)
IEEE Trans. Acoust., Speech, Signal Process
, vol.ASSP-29
, Issue.6
, pp. 1153-1160
-
-
Keys, R.G.1
-
15
-
-
0032957741
-
Gain optimized cosine transform domain LMS algorithm for adaptive filtering of EEG
-
H. Olkkonen, P. Pesola, A. Valjakka, and L. Tuomisto, "Gain optimized cosine transform domain LMS algorithm for adaptive filtering of EEG," Comput. Biol. Med., vol. 29, pp. 129-136, 1999.
-
(1999)
Comput. Biol. Med
, vol.29
, pp. 129-136
-
-
Olkkonen, H.1
Pesola, P.2
Valjakka, A.3
Tuomisto, L.4
-
16
-
-
13244259291
-
Efficient lifting wavelet transform for microprocessor and VLSI applications
-
Feb
-
H. Olkkonen, J. T. Olkkonen, and P. Pesola, "Efficient lifting wavelet transform for microprocessor and VLSI applications," IEEE Signal Process. Lett., vol. 12, no. 2, pp. 120-122, Feb. 2005.
-
(2005)
IEEE Signal Process. Lett
, vol.12
, Issue.2
, pp. 120-122
-
-
Olkkonen, H.1
Olkkonen, J.T.2
Pesola, P.3
-
17
-
-
0036571110
-
The design of approximate Hilbert transform pairs of wavelet bases
-
May
-
I. W. Selesnick, "The design of approximate Hilbert transform pairs of wavelet bases," IEEE Trans. Signal Process., vol. 50, no. 5, pp. 1144-1152, May 2002.
-
(2002)
IEEE Trans. Signal Process
, vol.50
, Issue.5
, pp. 1144-1152
-
-
Selesnick, I.W.1
|