메뉴 건너뛰기




Volumn 21, Issue 4, 2007, Pages 351-366

Inductive machine learning of optimal modular structures: Estimating solutions using support vector machines

Author keywords

Machine learning; Optimization; Structures; Support vector machines

Indexed keywords

ALGORITHMS; COMPOSITE STRUCTURES; ITERATIVE METHODS; MODULAR CONSTRUCTION; STRUCTURAL OPTIMIZATION;

EID: 34548795310     PISSN: 08900604     EISSN: 14691760     Source Type: Journal    
DOI: 10.1017/S0890060407000327     Document Type: Conference Paper
Times cited : (19)

References (32)
  • 1
    • 0027676858 scopus 로고
    • Integrated genetic algorithm for optimisation of space structures
    • Adeli, H., & Cheng, N. (1993). Integrated genetic algorithm for optimisation of space structures. Journal of Aerospace Engineering 6(4), 315-328.
    • (1993) Journal of Aerospace Engineering , vol.6 , Issue.4 , pp. 315-328
    • Adeli, H.1    Cheng, N.2
  • 2
    • 0025404252 scopus 로고    scopus 로고
    • (1.990). Inductive learning incivil engineering: Rough sets approach
    • Arciszewski, T., & Ziarko, W. (1.990). Inductive learning incivil engineering: rough sets approach. Microcomputers in Civil Engineering 5(1), 19-28.
    • Microcomputers in Civil Engineering , vol.5 , Issue.1 , pp. 19-28
    • Arciszewski, T.1    Ziarko, W.2
  • 3
    • 2142772953 scopus 로고    scopus 로고
    • Mechanical modelling of wood microstructure, an engineering approach
    • Astley, R.J., Harrington, J.J., & Stol, K.A. (1997). Mechanical modelling of wood microstructure, an engineering approach. IPENZ Transactions 24(1), 21-29.
    • (1997) IPENZ Transactions , vol.24 , Issue.1 , pp. 21-29
    • Astley, R.J.1    Harrington, J.J.2    Stol, K.A.3
  • 4
    • 0024105011 scopus 로고
    • Generating optimal topologies in structural design using a homogenization method
    • Bendsøe, M.P., & Kikuchi, N. (1988). Generating optimal topologies in structural design using a homogenization method. Computer Methods in Applied Mechanics and Engineering 71(2), 197-224.
    • (1988) Computer Methods in Applied Mechanics and Engineering , vol.71 , Issue.2 , pp. 197-224
    • Bendsøe, M.P.1    Kikuchi, N.2
  • 5
    • 0001241926 scopus 로고    scopus 로고
    • Material interpolation schemes in topology optimisation
    • Bendsøe, M.P., & Sigmund, O. (1999). Material interpolation schemes in topology optimisation. Archives of Applied Mechanics 69, 635-654.
    • (1999) Archives of Applied Mechanics , vol.69 , pp. 635-654
    • Bendsøe, M.P.1    Sigmund, O.2
  • 9
    • 0031142059 scopus 로고    scopus 로고
    • IEEE Expert: Intelligent Systems and Their Applications 12(3)
    • 71.-76
    • Duffy, A.H.B. (1997). The "what" and "how" of learning in design. IEEE Expert: Intelligent Systems and Their Applications 12(3), 71.-76.
    • (1997)
    • Duffy, A.H.B.1
  • 10
    • 34548709269 scopus 로고    scopus 로고
    • Modularity and flexibility at the small scale: Evolving continuous material variation with stereolithography
    • Beesley, P, Cheng, W, & Williamson, R, Eds, pp, Toronto: University of Waterloo School of Architecture Press
    • Hanna, S. & Haroun Mahdavi, S. (2004). Modularity and flexibility at the small scale: evolving continuous material variation with stereolithography. In Fabrication: Examining the Digital Practice of Architecture (Beesley, P., Cheng, W., & Williamson, R., Eds.), pp. 76-87. Toronto: University of Waterloo School of Architecture Press.
    • (2004) Fabrication: Examining the Digital Practice of Architecture , pp. 76-87
    • Hanna, S.1    Haroun Mahdavi, S.2
  • 11
    • 34548716566 scopus 로고    scopus 로고
    • Inductive machine learning of microstructures: Estimating a finite element optimisation using support vector machines
    • Gero, J.S, Ed, pp, Dordrecht: Springer
    • Hanna, S., & Haroun Mahdavi, S. (2006). Inductive machine learning of microstructures: estimating a finite element optimisation using support vector machines. In Design Computing and Cognition '06 (Gero, J.S., Ed.), pp. 563-582. Dordrecht: Springer.
    • (2006) Design Computing and Cognition '06 , pp. 563-582
    • Hanna, S.1    Haroun Mahdavi, S.2
  • 12
    • 84901472989 scopus 로고    scopus 로고
    • An evolutionary approach to microstructure optimisation, of stereolithographic models
    • Canberra, Australia
    • Haroun Mahdavi, S., & Hanna, S. (2003). An evolutionary approach to microstructure optimisation, of stereolithographic models. Proc. CEC2003, Congr. Evolutionary Computation, pp. 723-730, Canberra, Australia.
    • (2003) Proc. CEC2003, Congr. Evolutionary Computation , pp. 723-730
    • Haroun Mahdavi, S.1    Hanna, S.2
  • 13
    • 34548774711 scopus 로고    scopus 로고
    • Haroun Mahdavi, S., & Hanna, S. (2004). Optimising continuous microstructures: a comparison of gradient-based and stochastic methods. Proc. SCIS & ISIS 2004, Joint 2nd Int. Conf. Sofi Computing and Intelligent Systems and 5th Int. Symp. Advanced Intelligent Systems, p. WE-7-5, Yokohama, Japan.
    • Haroun Mahdavi, S., & Hanna, S. (2004). Optimising continuous microstructures: a comparison of gradient-based and stochastic methods. Proc. SCIS & ISIS 2004, Joint 2nd Int. Conf. Sofi Computing and Intelligent Systems and 5th Int. Symp. Advanced Intelligent Systems, p. WE-7-5, Yokohama, Japan.
  • 14
    • 32444433652 scopus 로고    scopus 로고
    • Parameterized versus generative representations in structural design: An empirical comparison
    • Kicinger, R., Arciszewski, T., & De Jong, K. (2005). Parameterized versus generative representations in structural design: an empirical comparison. Proc. GECCO '05, pp. 2007-2014.
    • (2005) Proc. GECCO '05 , pp. 2007-2014
    • Kicinger, R.1    Arciszewski, T.2    De Jong, K.3
  • 18
    • 0029534487 scopus 로고    scopus 로고
    • Neocleous, C.C., & Schizas, C.N. (1995). Artificial, neural networks in marine propeller design. Proc. ICNN'95 Int. Conf Neural Networks, 2, pp. 1.098-1102 New York: IEEE Computer Society Press.
    • Neocleous, C.C., & Schizas, C.N. (1995). Artificial, neural networks in marine propeller design. Proc. ICNN'95 Int. Conf Neural Networks, Vol. 2, pp. 1.098-1102 New York: IEEE Computer Society Press.
  • 19
    • 0036397173 scopus 로고    scopus 로고
    • State of the art on the use of genetic algorithms in design of steel structures
    • New York: ASCE
    • Pezeshk, S., & Camp, C.V. (2002). State of the art on the use of genetic algorithms in design of steel structures. In. Recent Advances in Optimal Structural Design. New York: ASCE.
    • (2002) Recent Advances in Optimal Structural Design
    • Pezeshk, S.1    Camp, C.V.2
  • 23
    • 0032628293 scopus 로고    scopus 로고
    • Reich, Y., & Barai, S.V. (1999). Evaluating machine learning models for engineering problems. Artificial Intelligence in Engineering 1.3, 257-272.
    • Reich, Y., & Barai, S.V. (1999). Evaluating machine learning models for engineering problems. Artificial Intelligence in Engineering 1.3, 257-272.
  • 31
    • 34548809875 scopus 로고    scopus 로고
    • Von Buelow, P. (2002). Using evolutionary algorithms to aid designers of archictural. structures. In Creative Evolutionary Systems (Bentley, P.J., & Come, D.W., Eds.). San Francisco, CA: Morgan Kaufmann.
    • Von Buelow, P. (2002). Using evolutionary algorithms to aid designers of archictural. structures. In Creative Evolutionary Systems (Bentley, P.J., & Come, D.W., Eds.). San Francisco, CA: Morgan Kaufmann.
  • 32
    • 33644690605 scopus 로고    scopus 로고
    • Predicting protein secondary structure by a support vector machine based on a new coding scheme
    • Wang, L.H., Liu, J., Li, Y.F., & Zhou, H.B. (2004). Predicting protein secondary structure by a support vector machine based on a new coding scheme. Genome Informatics 15(2), 181-190.
    • (2004) Genome Informatics , vol.15 , Issue.2 , pp. 181-190
    • Wang, L.H.1    Liu, J.2    Li, Y.F.3    Zhou, H.B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.