메뉴 건너뛰기




Volumn , Issue , 2007, Pages 338-345

Kernelizing LSPE(λ)

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION ALGORITHMS; COMPUTATIONAL METHODS; LEAST SQUARES APPROXIMATIONS; PUBLIC POLICY;

EID: 34548765672     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ADPRL.2007.368208     Document Type: Conference Paper
Times cited : (25)

References (28)
  • 1
    • 31844446681 scopus 로고    scopus 로고
    • Predictive low-rank decomposition for kernel methods
    • F. R. Bach and M. I. Jordan. Predictive low-rank decomposition for kernel methods. In Proc. of ICML 22, 2005.
    • (2005) Proc. of ICML 22
    • Bach, F.R.1    Jordan, M.I.2
  • 3
    • 85036496976 scopus 로고    scopus 로고
    • D. P. Bertsekas, V. S. Borkar, and A. Nedić. Improved temporal difference methods with linear function approximation, LIDS Tech. Report 2573, MIT, 2003, also appears in Learning and Approximate Dynamic Programming, by A. Barto, W. Powell, J. Si, (Eds.), IEEE Press, 2004.
    • D. P. Bertsekas, V. S. Borkar, and A. Nedić. Improved temporal difference methods with linear function approximation, LIDS Tech. Report 2573, MIT, 2003, also appears in Learning and Approximate Dynamic Programming, by A. Barto, W. Powell, J. Si, (Eds.), IEEE Press, 2004.
  • 4
    • 4243567726 scopus 로고    scopus 로고
    • Temporal differences-based policy iteration and applications in neuro-dynamic programming
    • LIDS-P-2349, MIT, 1996
    • D. P. Bertsekas and S. Ioffe. Temporal differences-based policy iteration and applications in neuro-dynamic programming, LIDS Tech. Report LIDS-P-2349, MIT, 1996.
    • LIDS Tech. Report
    • Bertsekas, D.P.1    Ioffe, S.2
  • 5
    • 0038595396 scopus 로고    scopus 로고
    • Least-squares temporal difference learning
    • J. A. Boyan. Least-squares temporal difference learning. In Proc. of ICML 16, 1999.
    • (1999) Proc. of ICML 16
    • Boyan, J.A.1
  • 6
    • 0001771345 scopus 로고    scopus 로고
    • Linear least-squares algorithms for temporal difference learning
    • S. J. Bradtke and A. Barto. Linear least-squares algorithms for temporal difference learning. Machine Learning, 22:33-57, 1996.
    • (1996) Machine Learning , vol.22 , pp. 33-57
    • Bradtke, S.J.1    Barto, A.2
  • 7
    • 84898947911 scopus 로고    scopus 로고
    • Sparse representation for Gaussian process models
    • L. Csató and M. Opper. Sparse representation for Gaussian process models. In Advances in NIPS 13, pages 444-450, 2001.
    • (2001) Advances in NIPS , vol.13 , pp. 444-450
    • Csató, L.1    Opper, M.2
  • 8
    • 1942421151 scopus 로고    scopus 로고
    • Bayes meets Bellman: The Gaussian process approach to temporal difference learning
    • Y. Engel, S. Mannor, and R. Meir. Bayes meets Bellman: The Gaussian process approach to temporal difference learning. In Proc. of ICML 20, pages 154-161, 2003.
    • (2003) Proc. of ICML 20 , pp. 154-161
    • Engel, Y.1    Mannor, S.2    Meir, R.3
  • 9
    • 31844451013 scopus 로고    scopus 로고
    • Reinforcement learning with gaussian processes
    • Y. Engel, S. Mannor, and R. Meir. Reinforcement learning with gaussian processes. In Proc. of ICML 22, 2005.
    • (2005) Proc. of ICML 22
    • Engel, Y.1    Mannor, S.2    Meir, R.3
  • 10
    • 34548800682 scopus 로고    scopus 로고
    • Learning to control an octopus arm with gaussian process temporal difference methods
    • Y. Engel, P. Szabo, and D. Volkinshtein. Learning to control an octopus arm with gaussian process temporal difference methods. In Advances in NIPS 17, 2005.
    • (2005) Advances in NIPS , vol.17
    • Engel, Y.1    Szabo, P.2    Volkinshtein, D.3
  • 11
    • 0041494125 scopus 로고    scopus 로고
    • Efficient SVM training using low-rank kernel representation
    • S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representation. JMLR, 2:243-264, 2001.
    • (2001) JMLR , vol.2 , pp. 243-264
    • Fine, S.1    Scheinberg, K.2
  • 12
    • 0004236492 scopus 로고    scopus 로고
    • 3rd Edition, John Hopkins University Press, Baltimore
    • G. Golub and C. Van Loan. Matrix Computations (3rd Edition). John Hopkins University Press, Baltimore, 1996.
    • (1996) Matrix Computations
    • Golub, G.1    Van Loan, C.2
  • 13
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • A. E. Hoerl and R. Kennard. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(3):55-67, 1970.
    • (1970) Technometrics , vol.12 , Issue.3 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.2
  • 14
    • 34548801806 scopus 로고    scopus 로고
    • Learning robocup-keepaway with kernels
    • submitted
    • T. Jung and D. Polani. Learning robocup-keepaway with kernels. submitted, 2006.
    • (2006)
    • Jung, T.1    Polani, D.2
  • 15
    • 77950988026 scopus 로고    scopus 로고
    • Sequential learning with ls-svm for large-scale data sets
    • T. Jung and D. Polani. Sequential learning with ls-svm for large-scale data sets. In Proc. of ICANN 16, 2006.
    • (2006) Proc. of ICANN 16
    • Jung, T.1    Polani, D.2
  • 16
    • 4644323293 scopus 로고    scopus 로고
    • Least-squares policy iteration
    • M. G. Lagoudakis and R. Parr. Least-squares policy iteration. JMLR, 4:1107-1149, 2003.
    • (2003) JMLR , vol.4 , pp. 1107-1149
    • Lagoudakis, M.G.1    Parr, R.2
  • 19
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • T. Poggio and F. Girosi. Networks for approximation and learning. Proceedings of IEEE, 78:1481-1497, 1990.
    • (1990) Proceedings of IEEE , vol.78 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 24
    • 84899000575 scopus 로고    scopus 로고
    • Sparse greedy Gaussian process regression
    • A. J. Smola and P. L. Bartlett. Sparse greedy Gaussian process regression. In Advances in NIPS 13, pages 619-625, 2001.
    • (2001) Advances in NIPS , vol.13 , pp. 619-625
    • Smola, A.J.1    Bartlett, P.L.2
  • 25
    • 0002493574 scopus 로고    scopus 로고
    • Sparse greedy matrix approximation for machine learning
    • A. J. Smola and B. Schölkopf. Sparse greedy matrix approximation for machine learning. In Proc of ICML 17, pages 911-918, 2000.
    • (2000) Proc of ICML 17 , pp. 911-918
    • Smola, A.J.1    Schölkopf, B.2
  • 27
    • 33847202724 scopus 로고
    • Learning to predict by the methods of temporal differences
    • R. S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning, 3:9-44, 1988.
    • (1988) Machine Learning , vol.3 , pp. 9-44
    • Sutton, R.S.1
  • 28
    • 84899010839 scopus 로고    scopus 로고
    • Using the Nyström method to speed up kernel machines
    • C. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. In Advances in NIPS 13, pages 682-688, 2001.
    • (2001) Advances in NIPS , vol.13 , pp. 682-688
    • Williams, C.1    Seeger, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.