-
1
-
-
31844446681
-
Predictive low-rank decomposition for kernel methods
-
F. R. Bach and M. I. Jordan. Predictive low-rank decomposition for kernel methods. In Proc. of ICML 22, 2005.
-
(2005)
Proc. of ICML 22
-
-
Bach, F.R.1
Jordan, M.I.2
-
3
-
-
85036496976
-
-
D. P. Bertsekas, V. S. Borkar, and A. Nedić. Improved temporal difference methods with linear function approximation, LIDS Tech. Report 2573, MIT, 2003, also appears in Learning and Approximate Dynamic Programming, by A. Barto, W. Powell, J. Si, (Eds.), IEEE Press, 2004.
-
D. P. Bertsekas, V. S. Borkar, and A. Nedić. Improved temporal difference methods with linear function approximation, LIDS Tech. Report 2573, MIT, 2003, also appears in Learning and Approximate Dynamic Programming, by A. Barto, W. Powell, J. Si, (Eds.), IEEE Press, 2004.
-
-
-
-
4
-
-
4243567726
-
Temporal differences-based policy iteration and applications in neuro-dynamic programming
-
LIDS-P-2349, MIT, 1996
-
D. P. Bertsekas and S. Ioffe. Temporal differences-based policy iteration and applications in neuro-dynamic programming, LIDS Tech. Report LIDS-P-2349, MIT, 1996.
-
LIDS Tech. Report
-
-
Bertsekas, D.P.1
Ioffe, S.2
-
5
-
-
0038595396
-
Least-squares temporal difference learning
-
J. A. Boyan. Least-squares temporal difference learning. In Proc. of ICML 16, 1999.
-
(1999)
Proc. of ICML 16
-
-
Boyan, J.A.1
-
6
-
-
0001771345
-
Linear least-squares algorithms for temporal difference learning
-
S. J. Bradtke and A. Barto. Linear least-squares algorithms for temporal difference learning. Machine Learning, 22:33-57, 1996.
-
(1996)
Machine Learning
, vol.22
, pp. 33-57
-
-
Bradtke, S.J.1
Barto, A.2
-
7
-
-
84898947911
-
Sparse representation for Gaussian process models
-
L. Csató and M. Opper. Sparse representation for Gaussian process models. In Advances in NIPS 13, pages 444-450, 2001.
-
(2001)
Advances in NIPS
, vol.13
, pp. 444-450
-
-
Csató, L.1
Opper, M.2
-
8
-
-
1942421151
-
Bayes meets Bellman: The Gaussian process approach to temporal difference learning
-
Y. Engel, S. Mannor, and R. Meir. Bayes meets Bellman: The Gaussian process approach to temporal difference learning. In Proc. of ICML 20, pages 154-161, 2003.
-
(2003)
Proc. of ICML 20
, pp. 154-161
-
-
Engel, Y.1
Mannor, S.2
Meir, R.3
-
10
-
-
34548800682
-
Learning to control an octopus arm with gaussian process temporal difference methods
-
Y. Engel, P. Szabo, and D. Volkinshtein. Learning to control an octopus arm with gaussian process temporal difference methods. In Advances in NIPS 17, 2005.
-
(2005)
Advances in NIPS
, vol.17
-
-
Engel, Y.1
Szabo, P.2
Volkinshtein, D.3
-
11
-
-
0041494125
-
Efficient SVM training using low-rank kernel representation
-
S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representation. JMLR, 2:243-264, 2001.
-
(2001)
JMLR
, vol.2
, pp. 243-264
-
-
Fine, S.1
Scheinberg, K.2
-
12
-
-
0004236492
-
-
3rd Edition, John Hopkins University Press, Baltimore
-
G. Golub and C. Van Loan. Matrix Computations (3rd Edition). John Hopkins University Press, Baltimore, 1996.
-
(1996)
Matrix Computations
-
-
Golub, G.1
Van Loan, C.2
-
13
-
-
84942484786
-
Ridge regression: Biased estimation for nonorthogonal problems
-
A. E. Hoerl and R. Kennard. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12(3):55-67, 1970.
-
(1970)
Technometrics
, vol.12
, Issue.3
, pp. 55-67
-
-
Hoerl, A.E.1
Kennard, R.2
-
14
-
-
34548801806
-
Learning robocup-keepaway with kernels
-
submitted
-
T. Jung and D. Polani. Learning robocup-keepaway with kernels. submitted, 2006.
-
(2006)
-
-
Jung, T.1
Polani, D.2
-
15
-
-
77950988026
-
Sequential learning with ls-svm for large-scale data sets
-
T. Jung and D. Polani. Sequential learning with ls-svm for large-scale data sets. In Proc. of ICANN 16, 2006.
-
(2006)
Proc. of ICANN 16
-
-
Jung, T.1
Polani, D.2
-
16
-
-
4644323293
-
Least-squares policy iteration
-
M. G. Lagoudakis and R. Parr. Least-squares policy iteration. JMLR, 4:1107-1149, 2003.
-
(2003)
JMLR
, vol.4
, pp. 1107-1149
-
-
Lagoudakis, M.G.1
Parr, R.2
-
19
-
-
0025490985
-
Networks for approximation and learning
-
T. Poggio and F. Girosi. Networks for approximation and learning. Proceedings of IEEE, 78:1481-1497, 1990.
-
(1990)
Proceedings of IEEE
, vol.78
, pp. 1481-1497
-
-
Poggio, T.1
Girosi, F.2
-
24
-
-
84899000575
-
Sparse greedy Gaussian process regression
-
A. J. Smola and P. L. Bartlett. Sparse greedy Gaussian process regression. In Advances in NIPS 13, pages 619-625, 2001.
-
(2001)
Advances in NIPS
, vol.13
, pp. 619-625
-
-
Smola, A.J.1
Bartlett, P.L.2
-
25
-
-
0002493574
-
Sparse greedy matrix approximation for machine learning
-
A. J. Smola and B. Schölkopf. Sparse greedy matrix approximation for machine learning. In Proc of ICML 17, pages 911-918, 2000.
-
(2000)
Proc of ICML 17
, pp. 911-918
-
-
Smola, A.J.1
Schölkopf, B.2
-
27
-
-
33847202724
-
Learning to predict by the methods of temporal differences
-
R. S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning, 3:9-44, 1988.
-
(1988)
Machine Learning
, vol.3
, pp. 9-44
-
-
Sutton, R.S.1
-
28
-
-
84899010839
-
Using the Nyström method to speed up kernel machines
-
C. Williams and M. Seeger. Using the Nyström method to speed up kernel machines. In Advances in NIPS 13, pages 682-688, 2001.
-
(2001)
Advances in NIPS
, vol.13
, pp. 682-688
-
-
Williams, C.1
Seeger, M.2
|