-
1
-
-
0036832954
-
Near-optimal reinforcement learning in polynomial time
-
M. J. Kearns and S. P. Singh, "Near-optimal reinforcement learning in polynomial time," Machine Learning, vol. 49, no. 2-3, pp. 209-232, 2002.
-
(2002)
Machine Learning
, vol.49
, Issue.2-3
, pp. 209-232
-
-
Kearns, M.J.1
Singh, S.P.2
-
2
-
-
0041965975
-
R-MAX - a general polynomial time algorithm for near-optimal reinforcement learning
-
R. I. Brafman and M. Tennenholtz, "R-MAX - a general polynomial time algorithm for near-optimal reinforcement learning," Journal of Machine Learning Research, vol. 3, pp. 213-231, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 213-231
-
-
Brafman, R.I.1
Tennenholtz, M.2
-
3
-
-
23244466805
-
-
Ph.D. dissertation, Gatsby Computational Neuroscience Unit, University College London
-
S. M. Kakade, "On the sample complexity of reinforcement learning," Ph.D. dissertation, Gatsby Computational Neuroscience Unit, University College London, 2003.
-
(2003)
On the sample complexity of reinforcement learning
-
-
Kakade, S.M.1
-
10
-
-
0346942368
-
Decision-theoretic planning: Structural assumptions and computational leverage
-
C. Boutilier, T. Dean, and S. Hanks, "Decision-theoretic planning: Structural assumptions and computational leverage," Journal of Artificial Intelligence Research, vol. 11, pp. 1-94, 1999.
-
(1999)
Journal of Artificial Intelligence Research
, vol.11
, pp. 1-94
-
-
Boutilier, C.1
Dean, T.2
Hanks, S.3
-
12
-
-
33749245414
-
Algorithm-directed exploration for model-based reinforcement learning in factored MDPs
-
C. Guestrin, R. Patrascu, and D. Schuurmans, "Algorithm-directed exploration for model-based reinforcement learning in factored MDPs," in Proceedings of the International Conference on Machine Learning, 2002, pp. 235-242.
-
(2002)
Proceedings of the International Conference on Machine Learning
, pp. 235-242
-
-
Guestrin, C.1
Patrascu, R.2
Schuurmans, D.3
-
14
-
-
0000675721
-
Context-specific independence in Bayesian networks
-
Portland, OR
-
C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller, "Context-specific independence in Bayesian networks," in Proceedings of the Twelfth Annual Conference on Uncertainty in Artificial Intelligence (UAI 96), Portland, OR, 1996, pp. 115-123.
-
(1996)
Proceedings of the Twelfth Annual Conference on Uncertainty in Artificial Intelligence (UAI 96)
, pp. 115-123
-
-
Boutilier, C.1
Friedman, N.2
Goldszmidt, M.3
Koller, D.4
-
15
-
-
0021518106
-
A theory of the learnable
-
November
-
L. G. Valiant, "A theory of the learnable," Communications of the ACM, vol. 27, no. 11, pp. 1134-1142, November 1984.
-
(1984)
Communications of the ACM
, vol.27
, Issue.11
, pp. 1134-1142
-
-
Valiant, L.G.1
-
16
-
-
34548745051
-
Incremental model-based learners with formal learning-time guarantees
-
A. L. Strehl, L. Li, and M. L. Littman, "Incremental model-based learners with formal learning-time guarantees," in UAI-06: Proceedings of the 22nd conference on Uncertainty in Artificial Intelligence, 2006, pp. 485-493.
-
(2006)
UAI-06: Proceedings of the 22nd conference on Uncertainty in Artificial Intelligence
, pp. 485-493
-
-
Strehl, A.L.1
Li, L.2
Littman, M.L.3
-
17
-
-
16244368573
-
-
HewlettPackard Labs, Tech. Rep. HPL-2003-97R1
-
T. Weissman, E. Ordentlich, G. Seroussi, S. Verdu, and M. J. Weinberger, "Inequalities for the L1 deviation of the empirical distribution," HewlettPackard Labs, Tech. Rep. HPL-2003-97R1, 2003.
-
(2003)
Inequalities for the L1 deviation of the empirical distribution
-
-
Weissman, T.1
Ordentlich, E.2
Seroussi, G.3
Verdu, S.4
Weinberger, M.J.5
-
18
-
-
0031369472
-
Probabilistic propositional planning: Representations and complexity
-
AAAI Press/The MIT Press, Online, Available
-
M. L. Littman, "Probabilistic propositional planning: Representations and complexity," in Proceedings of the Fourteenth National Conference on Artificial Intelligence. AAAI Press/The MIT Press, 1997, pp. 748-754. [Online], Available: http://www.cs.rutgers.edu/ mlittman/papers/aaai97-planning.ps
-
(1997)
Proceedings of the Fourteenth National Conference on Artificial Intelligence
, pp. 748-754
-
-
Littman, M.L.1
-
19
-
-
11544375673
-
The computational complexity of probabilistic planning
-
M. L. Littman, J. Goldsmith, and M. Mundhenk, "The computational complexity of probabilistic planning," Journal of Artificial Intelligence Research, vol. 9, pp. 1-36, 1998.
-
(1998)
Journal of Artificial Intelligence Research
, vol.9
, pp. 1-36
-
-
Littman, M.L.1
Goldsmith, J.2
Mundhenk, M.3
-
20
-
-
85081806239
-
A note on the representational incompatabilty of function approximation and factored dynamics
-
E. Allender, S. Arora, M. Kearns, C. Moore, and A. Russell, "A note on the representational incompatabilty of function approximation and factored dynamics." in Advances in Neural Information Processing Systems (NIPS-03), 2002.
-
(2002)
Advances in Neural Information Processing Systems (NIPS-03)
-
-
Allender, E.1
Arora, S.2
Kearns, M.3
Moore, C.4
Russell, A.5
-
21
-
-
33749242809
-
Learning the structure of factored Markov decision processes in reinforcement learning problems
-
T. Degris, O. Sigaud, and P.-H. Wuillemin, "Learning the structure of factored Markov decision processes in reinforcement learning problems," in ICML-06: Proceedings of the 23rd international conference on Machine learning, 2006, pp. 257-264.
-
(2006)
ICML-06: Proceedings of the 23rd international conference on Machine learning
, pp. 257-264
-
-
Degris, T.1
Sigaud, O.2
Wuillemin, P.-H.3
|