메뉴 건너뛰기




Volumn 50, Issue 4, 2007, Pages 1355-1361

Discrimination of pear varieties using three classification methods based on near-infrared spectroscopy

Author keywords

Discriminant analysis; Fruit; Near infrared; Neural network; Partial least squares; Variety classification

Indexed keywords

CALIBRATION MODELS; DISCRIMINANT MODELS; PARTIAL LEAST SQUARES; VARIETY CLASSIFICATION;

EID: 34548714243     PISSN: 21510032     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (22)

References (20)
  • 1
    • 11444267412 scopus 로고    scopus 로고
    • The study on prediction models for determination of sugar content in fruit juice
    • Chen, S., W. H. Chang, and K. W. Hsieh. 1998. The study on prediction models for determination of sugar content in fruit juice. J. Agric. Machinery (Taipei) 7(3): 41-60.
    • (1998) J. Agric. Machinery (Taipei) , vol.7 , Issue.3 , pp. 41-60
    • Chen, S.1    Chang, W.H.2    Hsieh, K.W.3
  • 3
    • 0346849602 scopus 로고    scopus 로고
    • Feasibility study on the use of visible and near-infrared spectroscopy together with chemometrics to discriminate between commercial white wines of different varietal origins
    • Cozzolino, D., H. E. Smyth, and M. Gishen. 2003. Feasibility study on the use of visible and near-infrared spectroscopy together with chemometrics to discriminate between commercial white wines of different varietal origins. J. Agric. Food Chem. 51(26): 7703-7708.
    • (2003) J. Agric. Food Chem , vol.51 , Issue.26 , pp. 7703-7708
    • Cozzolino, D.1    Smyth, H.E.2    Gishen, M.3
  • 4
    • 0033919022 scopus 로고    scopus 로고
    • Near-infrared spectroscopic technique for detection of beef hamburger adulteration
    • Ding, H. B., and R. J. Xu, 2000. Near-infrared spectroscopic technique for detection of beef hamburger adulteration. J. Agric. Food Chem. 48(6): 2193-2198.
    • (2000) J. Agric. Food Chem , vol.48 , Issue.6 , pp. 2193-2198
    • Ding, H.B.1    Xu, R.J.2
  • 5
    • 0037174465 scopus 로고    scopus 로고
    • Detecting and quantifying sunflower oil adulteration in extra virgin olive oils from the eastern Mediterranean by visible and near-infrared spectroscopy
    • Downey, G., P. Mcintyre, and A. N. Davies. 2002. Detecting and quantifying sunflower oil adulteration in extra virgin olive oils from the eastern Mediterranean by visible and near-infrared spectroscopy. J. Agric. Food Chem. 50(20): 5520-5525.
    • (2002) J. Agric. Food Chem , vol.50 , Issue.20 , pp. 5520-5525
    • Downey, G.1    Mcintyre, P.2    Davies, A.N.3
  • 6
    • 1942486903 scopus 로고    scopus 로고
    • Detection of honey adulteration by addition of fructose and glucose using near infrared transflectance spectroscopy
    • Downey, G., V. Fouratier, and J. D. Kelly. 2003. Detection of honey adulteration by addition of fructose and glucose using near infrared transflectance spectroscopy. J. Near Infrared Spectroscopy 11(6): 447-456.
    • (2003) J. Near Infrared Spectroscopy , vol.11 , Issue.6 , pp. 447-456
    • Downey, G.1    Fouratier, V.2    Kelly, J.D.3
  • 7
    • 33845936324 scopus 로고    scopus 로고
    • Coffee varietal differentiation based on near infrared spectroscopy
    • Esteban-Diez, I., J. M. Gonzalez-Saiz, C. Saenz-Gonzalez, and C. Pizarro. 2007. Coffee varietal differentiation based on near infrared spectroscopy. Talanta 71(1): 221-229.
    • (2007) Talanta , vol.71 , Issue.1 , pp. 221-229
    • Esteban-Diez, I.1    Gonzalez-Saiz, J.M.2    Saenz-Gonzalez, C.3    Pizarro, C.4
  • 8
    • 0037298712 scopus 로고    scopus 로고
    • Comparison of logistic regression and neural network-based classifiers for bacterial growth
    • Hajmeer, M., and I. Basheer. 2003. Comparison of logistic regression and neural network-based classifiers for bacterial growth. Food Microbiol. 20(1): 43-55.
    • (2003) Food Microbiol , vol.20 , Issue.1 , pp. 43-55
    • Hajmeer, M.1    Basheer, I.2
  • 9
    • 0034710164 scopus 로고    scopus 로고
    • Linear and non-linear pattern recognition models for classification of fruit from visible-near infrared spectra
    • Kim, J., A. Mowat, P. Poole, and N. Kasabov. 2000. Linear and non-linear pattern recognition models for classification of fruit from visible-near infrared spectra. Chemometrics Intelligent Lab. Syst. 51(2): 201-216.
    • (2000) Chemometrics Intelligent Lab. Syst , vol.51 , Issue.2 , pp. 201-216
    • Kim, J.1    Mowat, A.2    Poole, P.3    Kasabov, N.4
  • 10
    • 0037866640 scopus 로고    scopus 로고
    • Detection of heterogeneous wheat samples using near infrared spectroscopy
    • Lafargue, M. E., M. Feigerg. J. Daudin, and D. N. Rutledge. 2003. Detection of heterogeneous wheat samples using near infrared spectroscopy. J. Near Infrared Spectroscopy 11(2): 109-121.
    • (2003) J. Near Infrared Spectroscopy , vol.11 , Issue.2 , pp. 109-121
    • Lafargue, M.E.1    Feigerg, M.2    Daudin, J.3    Rutledge, D.N.4
  • 11
    • 27144557994 scopus 로고    scopus 로고
    • An optical system for measurement of internal pear quality using near-infrared spectroscopy
    • Liu, Y., and Y. Ying. 2005. An optical system for measurement of internal pear quality using near-infrared spectroscopy. J. Optical Eng. 47(7): 1-5.
    • (2005) J. Optical Eng , vol.47 , Issue.7 , pp. 1-5
    • Liu, Y.1    Ying, Y.2
  • 12
    • 0036769252 scopus 로고    scopus 로고
    • Near-infrared sensing technique for measuring internal quality of apple fruit
    • Lu, R., and D. A. Ariana. 2002. Near-infrared sensing technique for measuring internal quality of apple fruit. Applied Eng. in Agric. 18(5): 585-590.
    • (2002) Applied Eng. in Agric , vol.18 , Issue.5 , pp. 585-590
    • Lu, R.1    Ariana, D.A.2
  • 13
    • 34548794108 scopus 로고    scopus 로고
    • Marten, G. C., J. S. Shenk, and F .E. Barton. 1989. Near infrared reflectance spectroscopy (NIRS): Analysis of forage quality. Agriculture Handbook No. 643. Washington, D.G: USDA.
    • Marten, G. C., J. S. Shenk, and F .E. Barton. 1989. Near infrared reflectance spectroscopy (NIRS): Analysis of forage quality. Agriculture Handbook No. 643. Washington, D.G: USDA.
  • 14
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • Specht. D. F. 1990. Probabilistic neural networks. Neural Networks 3(1): 109-118.
    • (1990) Neural Networks , vol.3 , Issue.1 , pp. 109-118
    • Specht, D.F.1
  • 15
    • 29444440889 scopus 로고    scopus 로고
    • Tumor tissue identification based on gene expression data using DWT feature extraction and PNN classifier
    • Sun, G., X. Dong, and G. Xu. 2006. Tumor tissue identification based on gene expression data using DWT feature extraction and PNN classifier. Neurocomputing 69(4-6): 387-402.
    • (2006) Neurocomputing , vol.69 , Issue.4-6 , pp. 387-402
    • Sun, G.1    Dong, X.2    Xu, G.3
  • 16
    • 0036888274 scopus 로고    scopus 로고
    • Classification of cultivation area of ginseng by near infrared spectroscopy and ICP-AES
    • Woo, Y. A., C. H. Cho, H. J. Kim, J. S. Yang, and K. Y. Seong. 2002. Classification of cultivation area of ginseng by near infrared spectroscopy and ICP-AES. Microchemical J. 73(3): 299-306.
    • (2002) Microchemical J , vol.73 , Issue.3 , pp. 299-306
    • Woo, Y.A.1    Cho, C.H.2    Kim, H.J.3    Yang, J.S.4    Seong, K.Y.5
  • 17
    • 11144295709 scopus 로고    scopus 로고
    • Near-infrared spectroscopy for the non-destructive and fast determination of geographical origin of Angelicae gigantis radix
    • Woo, Y. A., C. H. Cho, H. J. Kim, K. R. Ze, and H. Chung. 2005. Near-infrared spectroscopy for the non-destructive and fast determination of geographical origin of Angelicae gigantis radix. J. Pharm. Biomed Analysis 36(5): 955-959.
    • (2005) J. Pharm. Biomed Analysis , vol.36 , Issue.5 , pp. 955-959
    • Woo, Y.A.1    Cho, C.H.2    Kim, H.J.3    Ze, K.R.4    Chung, H.5
  • 18
    • 19544386838 scopus 로고    scopus 로고
    • Study of probabilistic neural networks to classify the active compounds in medicinal plants
    • Xue, C. X., X. Y. Zhang, M. C. Liu, Z. D. Hua, and B. T. Fan. 2005. Study of probabilistic neural networks to classify the active compounds in medicinal plants. J. Pharm. Biomed. Analysis 38(3): 497-507.
    • (2005) J. Pharm. Biomed. Analysis , vol.38 , Issue.3 , pp. 497-507
    • Xue, C.X.1    Zhang, X.Y.2    Liu, M.C.3    Hua, Z.D.4    Fan, B.T.5
  • 20
    • 18644373765 scopus 로고    scopus 로고
    • Fourier transform near-infrared determination of total soluble solids and available acid in intact peaches
    • Ying, Y., Y. Liu, J. Wang, X. Fu, and Y. Li. 2005. Fourier transform near-infrared determination of total soluble solids and available acid in intact peaches. Trans. ASAE 48(1): 229-234.
    • (2005) Trans. ASAE , vol.48 , Issue.1 , pp. 229-234
    • Ying, Y.1    Liu, Y.2    Wang, J.3    Fu, X.4    Li, Y.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.