메뉴 건너뛰기




Volumn 7, Issue 3, 2003, Pages 209-232

Association-based similarity testing and its applications

Author keywords

association; distributed data mining; heterogeneous; maximal frequent itemset; similarity measure

Indexed keywords

ASSOCIATION REACTIONS; MAPPING;

EID: 34548714163     PISSN: 1088467X     EISSN: 15714128     Source Type: Journal    
DOI: 10.3233/ida-2003-7304     Document Type: Article
Times cited : (8)

References (57)
  • 2
    • 85006228721 scopus 로고
    • Efficient similarity search in sequence databases
    • Proceedings of 4th International Conference on Foundations of Data Organization and Algorithms Springer-Verlag
    • R. Agrawal, C. Faloutsos and A. Swami, Efficient similarity search in sequence databases, in Proceedings of 4th International Conference on Foundations of Data Organization and Algorithms, Springer-Verlag, Lecture Notes in Computer Science 730, 1993, pp. 69-84.
    • (1993) Lecture Notes in Computer Science , vol.730 , pp. 69-84
    • Agrawal, R.1    Faloutsos, C.2    Swami, A.3
  • 6
    • 0016556021 scopus 로고
    • A new approach to manipulator control: The cerebellar model articlatioon controller (CMAC)
    • Sep
    • J.S. Albus, A new approach to manipulator control: The cerebellar model articlatioon controller (CMAC), Trans. of the ASME, J. Dynamic Systems, Meaasurement, and Control 97(3) (Sep. 1975), 220-227.
    • (1975) Trans. Of the ASME, J. Dynamic Systems, Meaasurement, and Control , vol.97 , Issue.3 , pp. 220-227
    • Albus, J.S.1
  • 7
    • 0032091573 scopus 로고    scopus 로고
    • Efficiently mining long patterns from databases
    • R.J. Bayardo, Efficiently mining long patterns from databases, in ACM SIGMOD, 1998, pp. 85-93.
    • (1998) ACM SIGMOD , pp. 85-93
    • Bayardo, R.J.1
  • 11
    • 0035007850 scopus 로고    scopus 로고
    • MAFIA: A maximal frequent itemset algorithm for transactional databases
    • D. Burdick, M. Calimlim and J. Gehrke, MAFIA: A maximal frequent itemset algorithm for transactional databases, in ICDE, 2001, pp. 443-452.
    • (2001) ICDE , pp. 443-452
    • Burdick, D.1    Calimlim, M.2    Gehrke, J.3
  • 16
    • 84974698302 scopus 로고    scopus 로고
    • Context-based similarity methods for categorical attributes
    • D.Z. et al ed
    • G. Das and H. Mannila, Context-based similarity methods for categorical attributes, in PKDD, D.Z. et al, ed., 2000, pp. 201-211.
    • (2000) PKDD , pp. 201-211
    • Das, G.1    Mannila, H.2
  • 20
    • 0005107080 scopus 로고    scopus 로고
    • Mining n most interesting itemsets
    • Proceedings of 12th International Symposium on Methodologies for Intelligent Systems, Springer-Verlag
    • A. Fu, R. Kwong and J. Tang, Mining n most interesting itemsets, in Proceedings of 12th International Symposium on Methodologies for Intelligent Systems, Springer-Verlag Lecture Notes in Computer Science 1932, 2000, pp. 59-67.
    • (2000) Lecture Notes in Computer Science , vol.1932 , pp. 59-67
    • Fu, A.1    Kwong, R.2    Tang, J.3
  • 21
    • 0024748699 scopus 로고
    • Faster scaling algorithms for network problems
    • H.N. Gabow and R.E. Tarjan, Faster scaling algorithms for network problems, SIAM Journal on Computing 18 (1989), 1013-1036.
    • (1989) SIAM Journal on Computing , vol.18 , pp. 1013-1036
    • Gabow, H.N.1    Tarjan, R.E.2
  • 23
    • 84958044742 scopus 로고
    • On similarity queries for time-series data: Constraint specification and implementation
    • Proceedings of the 1st International Conference on Principles and Practice of Constraint Programming (CP'95) Cassis, France, Springer Verlag
    • D.Q. Goldin and P.C. Kanellakis, On similarity queries for time-series data: Constraint specification and implementation, in Proceedings of the 1st International Conference on Principles and Practice of Constraint Programming (CP'95), volume 976 of LNCS, Cassis, France, Springer Verlag, 1995, pp. 137-153.
    • (1995) LNCS , vol.976 , pp. 137-153
    • Goldin, D.Q.1    Kanellakis, P.C.2
  • 25
    • 78149351437 scopus 로고    scopus 로고
    • Efficiently mining maximal frequent itemsets
    • K. Gouda and M.J. Zaki, Efficiently mining maximal frequent itemsets, in ICDM, 2001, pp. 163-170.
    • (2001) ICDM , pp. 163-170
    • Gouda, K.1    Zaki, M.J.2
  • 26
    • 0031165409 scopus 로고    scopus 로고
    • Scalable parallel data mining for association rules
    • ACM Press
    • E. Han, G. Karypis and V. Kumar, Scalable parallel data mining for association rules, in ACM SIGMOD Conference, ACM Press, 1997, pp. 277-288.
    • (1997) ACM SIGMOD Conference , pp. 277-288
    • Han, E.1    Karypis, G.2    Kumar, V.3
  • 27
    • 0039253846 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation
    • ACM Press
    • J. Han, J. Pei and Y. Yin, Mining frequent patterns without candidate generation, in ACM SIGMOD Conference, ACM Press, 2000, pp. 1-12.
    • (2000) ACM SIGMOD Conference , pp. 1-12
    • Han, J.1    Pei, J.2    Yin, Y.3
  • 30
    • 0002784345 scopus 로고    scopus 로고
    • Algorithms for association rule mining-A general survey and comparison
    • J. Hipp, U. G̈untzer and G. Nakhaeizadeh, Algorithms for association rule mining-a general survey and comparison, SIGKDD Explorations 2(1) (2000), 58-63.
    • (2000) SIGKDD Explorations , vol.2 , Issue.1 , pp. 58-63
    • Hipp, J.1    G̈untzer, U.2    Nakhaeizadeh, G.3
  • 35
    • 0036215968 scopus 로고    scopus 로고
    • A decomposition theorem for maximum weight bipartite matchings
    • M.-Y. Kao, T.-W. Lam,W.-K. Sung and H.-F. Ting, A decomposition theorem for maximum weight bipartite matchings, SIAM Journal on Computing 31(1) (2001), 18-26.
    • (2001) SIAM Journal on Computing , vol.31 , Issue.1 , pp. 18-26
    • Kao, M.-Y.1    Lam, T.-W.2    Sung, W.-K.3    Ting, H.-F.4
  • 37
    • 0001282382 scopus 로고    scopus 로고
    • Collective data mining: A new perspective toward distributed data mining
    • H. Kargupta and P. Chan, eds, AAAI Press
    • H. Kargupta, B. Park, D. Hershbereger and E. Johnson, Collective data mining: A new perspective toward distributed data mining, in Advances in Distributed and Parallel Data Mining, H. Kargupta and P. Chan, eds, AAAI Press, 2000, pp. 133-184.
    • (2000) Advances in Distributed and Parallel Data Mining , pp. 133-184
    • Kargupta, H.1    Park, B.2    Hershbereger, D.3    Johnson, E.4
  • 38
    • 0037928941 scopus 로고    scopus 로고
    • A new distributed data mining model based on similarity
    • Melbourne, Florida, USA
    • T. Li, S. Zhu and M. Ogihara, A new distributed data mining model based on similarity, in: the 18th ACM Symposium on Applied Computing (SAC), Melbourne, Florida, USA, 2003, pp. 432-436.
    • (2003) The 18th ACM Symposium on Applied Computing (SAC) , pp. 432-436
    • Li, T.1    Zhu, S.2    Ogihara, M.3
  • 39
    • 0031324682 scopus 로고    scopus 로고
    • Similarity of event sequences
    • H. Mannila and P. Ronkainen, Similarity of event sequences, in TIME, 1997, pp. 136-139.
    • (1997) TIME , pp. 136-139
    • Mannila, H.1    Ronkainen, P.2
  • 41
    • 84879106048 scopus 로고    scopus 로고
    • Clustering distributed homogeneous datasets
    • Proceedings of the Fourth European Conference on Principles of Data Mining and Knowledge Discovery D.A. Zighed, H.J. Komorowski and J.M. Zytkow, eds, Springer-Verlag
    • S. Parthasarathy and M. Ogihara, Clustering distributed homogeneous datasets, in Proceedings of the Fourth European Conference on Principles of Data Mining and Knowledge Discovery, D.A. Zighed, H.J. Komorowski and J.M. Zytkow, eds, Springer-Verlag Lecture Notes in Computer Science 1910, 2000, pp. 566-574.
    • (2000) Lecture Notes in Computer Science , vol.1910 , pp. 566-574
    • Parthasarathy, S.1    Ogihara, M.2
  • 42
    • 84876371181 scopus 로고    scopus 로고
    • Exploiting dataset similarity for distributed mining
    • Parallel and Distributed Processing 15 IPDPS 2000 Workshops Proceedings, J.D.P.R. et al., ed., Springer-Verlag
    • S. Parthasarathy and M. Ogihara, Exploiting dataset similarity for distributed mining, in Parallel and Distributed Processing, 15 IPDPS 2000 Workshops Proceedings, J.D.P.R. et al., ed., Springer-Verlag, Lecture Notes in Computer Science 1800, 2000, pp. 390-398.
    • (2000) Lecture Notes in Computer Science , vol.1800 , pp. 390-398
    • Parthasarathy, S.1    Ogihara, M.2
  • 43
    • 2342549891 scopus 로고    scopus 로고
    • Distributed data mining: Scaling up and beyond
    • H. Kargupta and P. Chan, ed, AAAI/MIT Press
    • F. Provost, Distributed data mining: Scaling up and beyond, in Advances in Distributed Data Mining, H. Kargupta and P. Chan, ed, AAAI/MIT Press, 2000, pp. 3-27.
    • (2000) Advances in Distributed Data Mining , pp. 3-27
    • Provost, F.1
  • 47
    • 0010362181 scopus 로고    scopus 로고
    • Ph.lic. thesis, University of Helsinki 1998, Available as Report C-1998-42, University of Helsinki, Department of Computer Science, October
    • R. Ronkainen, Attribute Similarity and Event Sequence Similarity in Data Mining, Ph.lic. thesis, University of Helsinki, 1998, Available as Report C-1998-42, University of Helsinki, Department of Computer Science, October, 1998.
    • (1998) Attribute Similarity and Event Sequence Similarity in Data Mining
    • Ronkainen, R.1
  • 49
    • 0030157416 scopus 로고    scopus 로고
    • Mining quantitative association rules in large relational tables
    • R. Srikant and R. Agrawal, Mining quantitative association rules in large relational tables, in SIGMOD-96, 1996, pp. 1-12.
    • (1996) SIGMOD-96 , pp. 1-12
    • Srikant, R.1    Agrawal, R.2
  • 51
    • 0002663971 scopus 로고    scopus 로고
    • Sampling large databases for association rules
    • H. Toivonen, Sampling large databases for association rules, in The VLDB Journal, 1996, pp. 134-145.
    • (1996) The VLDB Journal , pp. 134-145
    • Toivonen, H.1
  • 57
    • 84864857888 scopus 로고    scopus 로고
    • CoFD: An algorithm for non-distance based clustering in high dimensional spaces
    • 4th International Conference of DataWarehousing and Knowledge Discovery (DaWaK 2002) Y. Kambayashi,W.Winiwarter and M. Arikawa, eds Aix-en-Provence, France, Springer-Verlag, September
    • S. Zhu, T. Li and M. Ogihara, CoFD: An algorithm for non-distance based clustering in high dimensional spaces, in 4th International Conference of DataWarehousing and Knowledge Discovery (DaWaK 2002), Y. Kambayashi,W.Winiwarter and M. Arikawa, eds, vol. 2454 of LNCS, Aix-en-Provence, France, Springer-Verlag, September 2002, pp. 52-62.
    • (2002) LNCS , vol.2454 , pp. 52-62
    • Zhu, S.1    Li, T.2    Ogihara, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.