-
2
-
-
0009218539
-
Lie groups whose coadjoint orbits are of dimension smaller or equal to two
-
Arnal, D., M. Cahen, and J. Ludwig, Lie groups whose coadjoint orbits are of dimension smaller or equal to two, Lett. Math. Phys. 33 (1995), 183-186.
-
(1995)
Lett. Math. Phys
, vol.33
, pp. 183-186
-
-
Arnal, D.1
Cahen, M.2
Ludwig, J.3
-
3
-
-
34548621580
-
-
de Azcárraga, J. A., J. M. Izquierdo, and J. C. Pérez Bueno, An introduction to some novel applications of Lie algebra cohomology in mathematics and physics, RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 95 (2001), 225-248.
-
de Azcárraga, J. A., J. M. Izquierdo, and J. C. Pérez Bueno, An introduction to some novel applications of Lie algebra cohomology in mathematics and physics, RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 95 (2001), 225-248.
-
-
-
-
5
-
-
34548605283
-
-
Cartan, H., La transgression dans un groupe de Lie et dans un espace fibre principal, Coll. Topologie, C. B. R. M. Bruxelles (1950), 57-71.
-
Cartan, H., La transgression dans un groupe de Lie et dans un espace fibre principal, Coll. Topologie, C. B. R. M. Bruxelles (1950), 57-71.
-
-
-
-
6
-
-
0038220552
-
The Betti numbers of the exceptional Lie groups
-
Chevalley, C., The Betti numbers of the exceptional Lie groups, Proc. Intern. Congress of Math. II (1950), 21-24.
-
(1950)
Proc. Intern. Congress of Math
, vol.2
, pp. 21-24
-
-
Chevalley, C.1
-
7
-
-
0001110059
-
Noncommutative differential geometry
-
Connes, A., Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math. 62 (1985), 257-360.
-
(1985)
Inst. Hautes Études Sci. Publ. Math
, vol.62
, pp. 257-360
-
-
Connes, A.1
-
8
-
-
0007221565
-
Symmetrie, invariant, non-degenerate bilinear form on a Lie algebra
-
Favre, G., and L. Santharoubane, Symmetrie, invariant, non-degenerate bilinear form on a Lie algebra, J. Algebra 105 (1987), 451-464.
-
(1987)
J. Algebra
, vol.105
, pp. 451-464
-
-
Favre, G.1
Santharoubane, L.2
-
9
-
-
0000138835
-
n-Lie algebras, (Russian)
-
Filippov, V. T., n-Lie algebras, (Russian) Sibirsk. Mat. Zh. 26 (1985), 126-140
-
(1985)
Sibirsk. Mat. Zh
, vol.26
, pp. 126-140
-
-
Filippov, V.T.1
-
10
-
-
0000138835
-
translation
-
(English translation: Siberian Math. J. 26 (1985), 879-891).
-
(1985)
Siberian Math. J
, vol.26
, pp. 879-891
-
-
-
11
-
-
0003319183
-
Cohomology of infinite-dimensional Lie algebras
-
Consultants Bureau, New York
-
Fuks, D. B., "Cohomology of infinite-dimensional Lie algebras," Contemporary Soviet Mathematics, Consultants Bureau, New York, 1986.
-
(1986)
Contemporary Soviet Mathematics
-
-
Fuks, D.B.1
-
12
-
-
34548657615
-
-
Gerstenhaber, M., and S.D. Schack, Algebraic cohomology and deformation theory, Deformation theory of algebras and structures and applications (Il Ciocco, 1986), 11-264, NATO Adv. Sei. Inst. Ser. C Math. Phys. Sci. 247, Kluwer Acad. Publ., Dordrecht, 1988.
-
Gerstenhaber, M., and S.D. Schack, "Algebraic cohomology and deformation theory," Deformation theory of algebras and structures and applications (Il Ciocco, 1986), 11-264, NATO Adv. Sei. Inst. Ser. C Math. Phys. Sci. 247, Kluwer Acad. Publ., Dordrecht, 1988.
-
-
-
-
13
-
-
0002005582
-
PI-algebras
-
An introduction, Springer-Verlag, Berlin-New York
-
Jacobson, N., " PI-algebras. An introduction," Lecture Notes in Mathematics 441, Springer-Verlag, Berlin-New York, 1975.
-
(1975)
Lecture Notes in Mathematics
, vol.441
-
-
Jacobson, N.1
-
14
-
-
34548658671
-
-
Kac, V. G., Infinite dimensional Lie algebras Cambridge University Press, 1990.
-
Kac, V. G., " Infinite dimensional Lie algebras" Cambridge University Press, 1990.
-
-
-
-
15
-
-
0012567191
-
A theorem of Frobenius, a theorem of Amitsur-Levitzki and cohomology theory, J
-
Kostant, B., A theorem of Frobenius, a theorem of Amitsur-Levitzki and cohomology theory, J. Math, and Mech. 7 (1958), 237-264.
-
(1958)
Math, and Mech
, vol.7
, pp. 237-264
-
-
Kostant, B.1
-
16
-
-
0000898551
-
Clifford analogue of the Hopf-Koszul-Samelson theorem, the ρ -decomposition C(g) = EndVρ ⊗ C(P) and the g -module structure of Λ g
-
-, Clifford analogue of the Hopf-Koszul-Samelson theorem, the ρ -decomposition C(g) = EndVρ ⊗ C(P) and the g -module structure of Λ g, Adv. in Math. 125 (1997), 275-350.
-
(1997)
Adv. in Math
, vol.125
, pp. 275-350
-
-
Kostant, B.1
-
17
-
-
0001886183
-
Homologie et cohomologie des algebres de Lie
-
Koszul, J.-L., Homologie et cohomologie des algebres de Lie, Bull. Soc. Math. Fr. 78 (1950), 65-127.
-
(1950)
Bull. Soc. Math. Fr
, vol.78
, pp. 65-127
-
-
Koszul, J.-L.1
-
18
-
-
0001052135
-
Crochet de Schouten-Nijenhuis et cohomologie, The mathematical heritage of Élie Cartan (Lyon, 1984), Astérisque
-
_, Crochet de Schouten-Nijenhuis et cohomologie, The mathematical heritage of Élie Cartan (Lyon, 1984), Astérisque 1985, Numéro Hors Série, 257-271.
-
(1985)
Numéro Hors Série
, vol.257-271
-
-
Koszul, J.-L.1
-
19
-
-
0001537589
-
Algèbres de Lie et produit scalaire invariant
-
Medina, A., and P. Revoy, Algèbres de Lie et produit scalaire invariant, Ann. Sci. École Norm. Sup. (4) 18 (1985), 553-561.
-
(1985)
Ann. Sci. École Norm. Sup. (4)
, vol.18
, pp. 553-561
-
-
Medina, A.1
Revoy, P.2
-
20
-
-
84968476159
-
-
Nijenhuis, A., and R. W. Richardson, Jr., Cohomology and deformations in graded Lie algebras, Bull. Amer. Math. Soc. 72 (1966), 1-29.
-
Nijenhuis, A., and R. W. Richardson, Jr., Cohomology and deformations in graded Lie algebras, Bull. Amer. Math. Soc. 72 (1966), 1-29.
-
-
-
-
21
-
-
0002780902
-
The theory of Lie superalgebras. An introduction
-
Springer-Verlag Berlin-Heidelberg-New York
-
Scheunert, M., "The theory of Lie superalgebras. An introduction," Lecture Notes in Mathematics 716, Springer-Verlag Berlin-Heidelberg-New York, 1979.
-
(1979)
Lecture Notes in Mathematics
, vol.716
-
-
Scheunert, M.1
|