메뉴 건너뛰기




Volumn 30, Issue 8, 2007, Pages 1455-1463

Study on algorithms for local outlier detection

Author keywords

Data mining; Local outlier factor; Outlier detection; R* tree; Spatial outlier; Trimmed mean

Indexed keywords

ALGORITHMS;

EID: 34548639555     PISSN: 02544164     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (33)

References (12)
  • 3
    • 0002948319 scopus 로고    scopus 로고
    • Algorithms for mining distance-based outliers in large datasets
    • New York
    • Knorr E, Ng R. Algorithms for mining distance-based outliers in large datasets//Proceedings of the 24th VLDB Conference. New York, 1998; 392-403.
    • (1998) Proceedings of the 24th VLDB Conference , pp. 392-403
    • Knorr, E.1    Ng, R.2
  • 8
    • 33645548899 scopus 로고    scopus 로고
    • SLOM: A new measure for local spatial outliers
    • Chawla Sanjay, Sun Pei. SLOM: A new measure for local spatial outliers. Knowledge and Information Systems, 2006, 9(4): 412-429.
    • (2006) Knowledge and Information Systems , vol.9 , Issue.4 , pp. 412-429
    • Sanjay, C.1    Sun, P.2
  • 12
    • 33750096003 scopus 로고    scopus 로고
    • A trimmed mean approach to finding spatial outliers
    • Hu Tian-Ming, Sung Sam Yuan. A trimmed mean approach to finding spatial outliers. Intelligent Data Analysis, 2004, 8(1): 79-95.
    • (2004) Intelligent Data Analysis , vol.8 , Issue.1 , pp. 79-95
    • Hu, T.-M.1    Sung, S.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.