-
1
-
-
0030589786
-
A positive operator approach to the Neumann problem for a second order ordinary differential equation
-
Cabada A., and Sanchez L. A positive operator approach to the Neumann problem for a second order ordinary differential equation. J. Math. Anal. Appl. 204 (1996) 774-785
-
(1996)
J. Math. Anal. Appl.
, vol.204
, pp. 774-785
-
-
Cabada, A.1
Sanchez, L.2
-
2
-
-
0001020517
-
′) with periodic and Neumann boundary conditions
-
′) with periodic and Neumann boundary conditions. Nonlinear Anal. 30 (1997) 1733-1742
-
(1997)
Nonlinear Anal.
, vol.30
, pp. 1733-1742
-
-
Cabada, A.1
Pouse, R.R.L.2
-
3
-
-
0346941595
-
Monotone method for the Neumann problem with lower and upper solutions in the reverse order
-
Cabada A., Habets P., and Lois S. Monotone method for the Neumann problem with lower and upper solutions in the reverse order. Appl. Math. Comput. 117 (2001) 1-14
-
(2001)
Appl. Math. Comput.
, vol.117
, pp. 1-14
-
-
Cabada, A.1
Habets, P.2
Lois, S.3
-
4
-
-
22944463051
-
Liapunov-type inequalities and Neumann boundary value problems at resonance
-
Canada A., Montero J.A., and Villegas S. Liapunov-type inequalities and Neumann boundary value problems at resonance. Math. Inequal. Appl. 3 (2005) 459-475
-
(2005)
Math. Inequal. Appl.
, vol.3
, pp. 459-475
-
-
Canada, A.1
Montero, J.A.2
Villegas, S.3
-
5
-
-
0001873738
-
Upper and lower solutions in the theory of ODE boundary value problems: Classical and recent results
-
Nonlinear Analysis and Boundary Value Problems for Ordinary Differential Equations. Zanolin F. (Ed), Springer-Verlag, New York
-
De Coster C., and Habets P. Upper and lower solutions in the theory of ODE boundary value problems: Classical and recent results. In: Zanolin F. (Ed). Nonlinear Analysis and Boundary Value Problems for Ordinary Differential Equations. CISM-ICMS vol. 371 (1996), Springer-Verlag, New York 1-78
-
(1996)
CISM-ICMS
, vol.371
, pp. 1-78
-
-
De Coster, C.1
Habets, P.2
-
6
-
-
0042292280
-
Existence of positive solutions to second order Neumann boundary value problem
-
Jiang D., and Liu H. Existence of positive solutions to second order Neumann boundary value problem. J. Math. Res. Exposition 20 (2000) 360-364
-
(2000)
J. Math. Res. Exposition
, vol.20
, pp. 360-364
-
-
Jiang, D.1
Liu, H.2
-
7
-
-
0242593196
-
Multiple positive solutions to superlinear periodic boundary value problems with repulsive singular forces
-
Jiang D., Chu J., O'Regan D., and Agarwal R.P. Multiple positive solutions to superlinear periodic boundary value problems with repulsive singular forces. J. Math. Anal. Appl. 286 (2003) 563-576
-
(2003)
J. Math. Anal. Appl.
, vol.286
, pp. 563-576
-
-
Jiang, D.1
Chu, J.2
O'Regan, D.3
Agarwal, R.P.4
-
9
-
-
0042513670
-
Multiple positive solutions to second order Neumann boundary value problems
-
Sun J., and Li W. Multiple positive solutions to second order Neumann boundary value problems. Appl. Math. Comput. 146 (2003) 187-194
-
(2003)
Appl. Math. Comput.
, vol.146
, pp. 187-194
-
-
Sun, J.1
Li, W.2
-
10
-
-
0036568079
-
Monotone method for singular Neumann problem
-
Yazidi N. Monotone method for singular Neumann problem. Nonlinear Anal. 49 (2002) 589-602
-
(2002)
Nonlinear Anal.
, vol.49
, pp. 589-602
-
-
Yazidi, N.1
|