-
1
-
-
0007899108
-
An introduction to the mathematical theory of neural networks
-
P. L. Garrido & J. Marro Eds, Berlin: Springer
-
Albeverio, S., & Tirozzi, B. (1997). An introduction to the mathematical theory of neural networks. In P. L. Garrido & J. Marro (Eds.), Fourth Granada Lectures in Computational Physics (pp. 197-222). Berlin: Springer.
-
(1997)
Fourth Granada Lectures in Computational Physics
, pp. 197-222
-
-
Albeverio, S.1
Tirozzi, B.2
-
2
-
-
0042589620
-
Notes on cellular automata
-
Allouche, J.-P., Courbage, M., Skordev, G. (2001). Notes on cellular automata. Cubo, Matematica Educacional, 3, 213-244.
-
(2001)
Cubo, Matematica Educacional
, vol.3
, pp. 213-244
-
-
Allouche, J.-P.1
Courbage, M.2
Skordev, G.3
-
4
-
-
23444460700
-
Patterns of synchrony in lattice dynamical systems
-
Antonelli, F., Dias, A. P. S., Golubitsky, M., & Wang, Y. (2005). Patterns of synchrony in lattice dynamical systems. Nonlinearity, 18, 2193-2209.
-
(2005)
Nonlinearity
, vol.18
, pp. 2193-2209
-
-
Antonelli, F.1
Dias, A.P.S.2
Golubitsky, M.3
Wang, Y.4
-
5
-
-
0042363645
-
Short period attractors and non-ergodic behavior in the deterministic fixed energy sandpile model
-
Bagnoli, F., Cecconi, F., Flammini, A., & Vespignani, A. (2003). Short period attractors and non-ergodic behavior in the deterministic fixed energy sandpile model. Europhysics Letters, 63(4), 512-518.
-
(2003)
Europhysics Letters
, vol.63
, Issue.4
, pp. 512-518
-
-
Bagnoli, F.1
Cecconi, F.2
Flammini, A.3
Vespignani, A.4
-
6
-
-
15744401041
-
Self-organized criticality
-
Bak, P., Tang, C., & Wiesenfeld, K. (1988). Self-organized criticality. Phys. Rev. A, 38(1), 364-374.
-
(1988)
Phys. Rev. A
, vol.38
, Issue.1
, pp. 364-374
-
-
Bak, P.1
Tang, C.2
Wiesenfeld, K.3
-
7
-
-
0038483826
-
Emergence of scaling in random networks
-
Barabasi, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286, 509-512.
-
(1999)
Science
, vol.286
, pp. 509-512
-
-
Barabasi, A.-L.1
Albert, R.2
-
8
-
-
0348010295
-
Neuronal avalanches in neocortical circuits
-
Beggs, J. M., & Plenz, D. (2003). Neuronal avalanches in neocortical circuits. J. Neurosc., 23(35), 1167-1177.
-
(2003)
J. Neurosc
, vol.23
, Issue.35
, pp. 1167-1177
-
-
Beggs, J.M.1
Plenz, D.2
-
9
-
-
0033633230
-
What can we learn about self-organized criticality from dynamical systems theory?
-
Blanchard, P., Cessac, B., & Krüger, T. (2000). What can we learn about self-organized criticality from dynamical systems theory? J. Stat. Phys., 98, 357-404.
-
(2000)
J. Stat. Phys
, vol.98
, pp. 357-404
-
-
Blanchard, P.1
Cessac, B.2
Krüger, T.3
-
10
-
-
84983710542
-
Lyapunov exponents and transport in the Zhang model of self-organized criticality
-
Blanchard, P., Cessac, B., & Krüger, T. (2001). Lyapunov exponents and transport in the Zhang model of self-organized criticality. Phys. Rev. E, 64(1), 016133.
-
(2001)
Phys. Rev. E
, vol.64
, Issue.1
, pp. 016133
-
-
Blanchard, P.1
Cessac, B.2
Krüger, T.3
-
11
-
-
0037363001
-
Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity
-
Börgers, C., & Kopell, N. (2003). Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. Neural Computation, 15, 509-538.
-
(2003)
Neural Computation
, vol.15
, pp. 509-538
-
-
Börgers, C.1
Kopell, N.2
-
12
-
-
0004219960
-
-
San Diego, CA: Academic Press
-
Bollobás, B. (1985). Random graphs. San Diego, CA: Academic Press.
-
(1985)
Random graphs
-
-
Bollobás, B.1
-
13
-
-
0035650697
-
Synchronization of the neural response to noisy periodic synaptic input
-
Burkitt, A. N., & Clark, G. M. (2001). Synchronization of the neural response to noisy periodic synaptic input. Neural Computation, 13, 2639-2672.
-
(2001)
Neural Computation
, vol.13
, pp. 2639-2672
-
-
Burkitt, A.N.1
Clark, G.M.2
-
14
-
-
21844522047
-
Self-organized criticality in a cellular automaton model of pulse-coupled integrate-and-fire neurons
-
Chen, D., Eu, S., Guo, A., & Yang, Z. R. (1995). Self-organized criticality in a cellular automaton model of pulse-coupled integrate-and-fire neurons. J. Phys. A: Math. Gen., 28, 5177-5182.
-
(1995)
J. Phys. A: Math. Gen
, vol.28
, pp. 5177-5182
-
-
Chen, D.1
Eu, S.2
Guo, A.3
Yang, Z.R.4
-
15
-
-
0035482587
-
Mean-field theory and synchronization in random recurrent neural networks
-
Dauce, E., Moynot, O., Pinaud, O., & Samuelides, M. (2001). Mean-field theory and synchronization in random recurrent neural networks. Neural Processing Letters, 14, 115-126.
-
(2001)
Neural Processing Letters
, vol.14
, pp. 115-126
-
-
Dauce, E.1
Moynot, O.2
Pinaud, O.3
Samuelides, M.4
-
16
-
-
24844442721
-
Self-organized state of sandpile automaton models
-
Dhar, D. (1990). Self-organized state of sandpile automaton models. Phys. Rev. Lett., 64(14), 1613-1616.
-
(1990)
Phys. Rev. Lett
, vol.64
, Issue.14
, pp. 1613-1616
-
-
Dhar, D.1
-
17
-
-
0034349202
-
Paths to self-organized criticality
-
Dickman, R., Muñoz, M. A., Vespignani, A., & Zapperi, S. (2000). Paths to self-organized criticality. Brazilian J. Physics, 30(1), 27-41.
-
(2000)
Brazilian J. Physics
, vol.30
, Issue.1
, pp. 27-41
-
-
Dickman, R.1
Muñoz, M.A.2
Vespignani, A.3
Zapperi, S.4
-
20
-
-
0038936608
-
A fractal dimension estimate for a graph-directed iterated function system of non-similarities
-
Edgar, G. A., & Golds, J. (1999). A fractal dimension estimate for a graph-directed iterated function system of non-similarities. Indiana Univ. Math. Journal, 48(2), 429-447.
-
(1999)
Indiana Univ. Math. Journal
, vol.48
, Issue.2
, pp. 429-447
-
-
Edgar, G.A.1
Golds, J.2
-
21
-
-
0039584314
-
Fixed-point attractor analysis for a class of neurodynamics
-
Feng, J., & Brown, D. (1998). Fixed-point attractor analysis for a class of neurodynamics. Neural Computation 10, 189-213.
-
(1998)
Neural Computation
, vol.10
, pp. 189-213
-
-
Feng, J.1
Brown, D.2
-
23
-
-
0004601963
-
Dynamical properties of the Zhang model of self-organized criticality
-
Giacometti, A., & Diaz-Guilera, A. (1998). Dynamical properties of the Zhang model of self-organized criticality. Phys. Rev. E, 58(1), 247-253.
-
(1998)
Phys. Rev. E
, vol.58
, Issue.1
, pp. 247-253
-
-
Giacometti, A.1
Diaz-Guilera, A.2
-
24
-
-
0242425251
-
Sandpile on scale-free networks
-
Goh, K.-I., Lee, D.-S., Kahng, B., & Kim, D. (2003). Sandpile on scale-free networks. Phys. Rev. Lett., 91(14), 1487-1491.
-
(2003)
Phys. Rev. Lett
, vol.91
, Issue.14
, pp. 1487-1491
-
-
Goh, K.-I.1
Lee, D.-S.2
Kahng, B.3
Kim, D.4
-
25
-
-
0034184781
-
The number of synaptic inputs and the synchrony of large, sparse neuronal networks
-
Golomb, D., & Hansel, D. (2000). The number of synaptic inputs and the synchrony of large, sparse neuronal networks. Neural Computation, 12, 1095-1139.
-
(2000)
Neural Computation
, vol.12
, pp. 1095-1139
-
-
Golomb, D.1
Hansel, D.2
-
27
-
-
0003979924
-
-
Redwood City, CA: Addison-Wesley
-
Hertz, J., Krogh, A., & Palmer, R. G. (1991). Introduction to the theory of neural computation. Redwood City, CA: Addison-Wesley.
-
(1991)
Introduction to the theory of neural computation
-
-
Hertz, J.1
Krogh, A.2
Palmer, R.G.3
-
28
-
-
85047681116
-
What is a moment? Transient synchrony as a collective mechanism for spatiotemporal integration
-
Hopfield, J. J., & Brody, C. D. (2001). What is a moment? Transient synchrony as a collective mechanism for spatiotemporal integration. PNAS, 98(3), 1282-1287.
-
(2001)
PNAS
, vol.98
, Issue.3
, pp. 1282-1287
-
-
Hopfield, J.J.1
Brody, C.D.2
-
31
-
-
34548603833
-
-
Kandel, E. R, Schwartz, J. H, & Jessel, T. M, Eds, 4th ed, New York: McGraw-Hill
-
Kandel, E. R., Schwartz, J. H., & Jessel, T. M. (Eds.). (2000). Principles of neural science (4th ed.). New York: McGraw-Hill.
-
(2000)
Principles of neural science
-
-
-
32
-
-
0034767170
-
Connection topology dependence of synchronization of neural assemblies on class 1 and 2 excitability
-
Lago-Fernandez, L. F., Corbacho, F. J., & Huerta, R. (2001). Connection topology dependence of synchronization of neural assemblies on class 1 and 2 excitability. Neural Networks, 14, 687-696.
-
(2001)
Neural Networks
, vol.14
, pp. 687-696
-
-
Lago-Fernandez, L.F.1
Corbacho, F.J.2
Huerta, R.3
-
33
-
-
0000079015
-
Origin of synchronized traffic flow on highways and its dynamic phase transition
-
Lee, H. Y., Lee, H.-W., & Kim, D. (1998). Origin of synchronized traffic flow on highways and its dynamic phase transition. Phys. Rev. Lett., 81(3), 1130-1133.
-
(1998)
Phys. Rev. Lett
, vol.81
, Issue.3
, pp. 1130-1133
-
-
Lee, H.Y.1
Lee, H.-W.2
Kim, D.3
-
34
-
-
0002614889
-
Possible clinical and research applications of nonlinear EEG analysis in humans
-
K. Lehnertz, J. Arnhold, P. Grassberger, & C. E. Elger Eds, Singapore: World Scientific
-
Lehnertz, K., Andrzejak, R. G., Arnhold, J., Widman, G., Burr, W., David, P., & Elger, C. E. (2000). Possible clinical and research applications of nonlinear EEG analysis in humans. In K. Lehnertz, J. Arnhold, P. Grassberger, & C. E. Elger (Eds.), Chaos in brain? (pp. 134-155). Singapore: World Scientific.
-
(2000)
Chaos in brain
, pp. 134-155
-
-
Lehnertz, K.1
Andrzejak, R.G.2
Arnhold, J.3
Widman, G.4
Burr, W.5
David, P.6
Elger, C.E.7
-
35
-
-
0041995345
-
A deterministic sandpile automaton revisited
-
Lübeck, S., Rajewsky, N., & Wolf, D. E. (2000). A deterministic sandpile automaton revisited. Eur. Phys. J. B, 13, 715-721.
-
(2000)
Eur. Phys. J. B
, vol.13
, pp. 715-721
-
-
Lübeck, S.1
Rajewsky, N.2
Wolf, D.E.3
-
36
-
-
4243321309
-
Analytical calculation of the attractor periods of deterministic sandpiles
-
Markosova, M., & Markos, P. (1992). Analytical calculation of the attractor periods of deterministic sandpiles. Phys. Rev. A, 46(6), 3531-3534.
-
(1992)
Phys. Rev. A
, vol.46
, Issue.6
, pp. 3531-3534
-
-
Markosova, M.1
Markos, P.2
-
37
-
-
0035420732
-
Random graphs with arbitrary degree distribution and their applications
-
Newman, M. E. J., Strogatz, S. H., & Watts, D. J. (2001). Random graphs with arbitrary degree distribution and their applications. Phys. Rev. E, 64(2), 026118.
-
(2001)
Phys. Rev. E
, vol.64
, Issue.2
, pp. 026118
-
-
Newman, M.E.J.1
Strogatz, S.H.2
Watts, D.J.3
-
38
-
-
0041707963
-
Heterogeneity in oscillator networks: Are smaller worlds easier to synchronize?
-
Nishikawa, T., Motter, A. E., Lai, Y.-C., & Hoppensteadt, F. C. (2003). Heterogeneity in oscillator networks: Are smaller worlds easier to synchronize? Phys. Rev. Letters, 91(1), 014101.
-
(2003)
Phys. Rev. Letters
, vol.91
, Issue.1
, pp. 014101
-
-
Nishikawa, T.1
Motter, A.E.2
Lai, Y.-C.3
Hoppensteadt, F.C.4
-
39
-
-
33644768446
-
Synchronization of oscillators in complex networks
-
Pecora, L. M., & Barahona, M. (2005). Synchronization of oscillators in complex networks. Chaos and Compl. Letters, 1(1), 61-91.
-
(2005)
Chaos and Compl. Letters
, vol.1
, Issue.1
, pp. 61-91
-
-
Pecora, L.M.1
Barahona, M.2
-
40
-
-
0040890874
-
J. Mod. Phys. B, 10
-
8,9
-
Perez, C. J., Corral, A., & Diaz-Guilera, A. (1996). On self-organized criticality and synchronization in lattice models of coupled dynamical systems. J. Mod. Phys. B, 10(8,9), 1-41.
-
(1996)
, pp. 1-41
-
-
Perez, C.J.1
Corral, A.2
Diaz-Guilera, A.3
-
42
-
-
0005129114
-
Spontaneous synchronization in a discrete neural network model
-
K. Lehnertz, J. Arnhold, P. Grassberger, & C E. Elger Eds, Singapore: World Scientific
-
Volk, D. (2000). Spontaneous synchronization in a discrete neural network model. In K. Lehnertz, J. Arnhold, P. Grassberger, & C E. Elger (Eds.), Chaos in brain? (pp. 234-237). Singapore: World Scientific.
-
(2000)
Chaos in brain
, pp. 234-237
-
-
Volk, D.1
-
43
-
-
35949010691
-
Scaling theory of self-organized criticality
-
Zhang, Y. C. (1989). Scaling theory of self-organized criticality. Phys. Rev. Lett. 63(5), 470-473.
-
(1989)
Phys. Rev. Lett
, vol.63
, Issue.5
, pp. 470-473
-
-
Zhang, Y.C.1
|