-
1
-
-
34548561373
-
-
SKAION Corporation. SKAION Intrusion Detection System Evaluation Data
-
SKAION Corporation. SKAION Intrusion Detection System Evaluation Data.
-
-
-
-
3
-
-
0027621699
-
Mining association rules between sets of items in large databases
-
R. Agrawal, T. Imieliski, and A. Swami. Mining association rules between sets of items in large databases. In SIGMOD '93.
-
SIGMOD '93
-
-
Agrawal, R.1
Imieliski, T.2
Swami, A.3
-
4
-
-
0142253852
-
-
D. Barbara, J. Couto, S. Jajodia, and N. Wu. ADAM: A testbed for exploring the use of data mining in intrusion detection. SIGMOD Rec., 30(4):15-24, 2001.
-
D. Barbara, J. Couto, S. Jajodia, and N. Wu. ADAM: A testbed for exploring the use of data mining in intrusion detection. SIGMOD Rec., 30(4):15-24, 2001.
-
-
-
-
6
-
-
24644435548
-
Mining all non-derivable frequent itemsets
-
T. Calders and B. Goethals. Mining all non-derivable frequent itemsets. In PKDD '02.
-
PKDD '02
-
-
Calders, T.1
Goethals, B.2
-
7
-
-
34548578658
-
-
V. Chandola and V. Kumar. Summarization - compressing data into an informative representation. Technical Report TR 05-024, Dept. of Computer Science, University of Minnesota, Minneapolis, MN, USA, 2005.
-
V. Chandola and V. Kumar. Summarization - compressing data into an informative representation. Technical Report TR 05-024, Dept. of Computer Science, University of Minnesota, Minneapolis, MN, USA, 2005.
-
-
-
-
8
-
-
27844566482
-
MINDS - Minnesota Intrusion Detection System
-
MIT Press
-
L. Ertöz, E. Eilertson, A. Lazarevic, P.-N. Tan, V. Kumar, J. Srivastava, and P. Dokas. MINDS - Minnesota Intrusion Detection System. In Data Mining - Next Generation Challenges and Future Directions. MIT Press, 2004.
-
(2004)
Data Mining - Next Generation Challenges and Future Directions
-
-
Ertöz, L.1
Eilertson, E.2
Lazarevic, A.3
Tan, P.-N.4
Kumar, V.5
Srivastava, J.6
Dokas, P.7
-
10
-
-
78149328321
-
Mining top-k frequent closed patterns without minimum support
-
J. Han, J. Wang, Y. Lu, and P. Tzvetkov. Mining top-k frequent closed patterns without minimum support. In ICDM '02.
-
ICDM '02
-
-
Han, J.1
Wang, J.2
Lu, Y.3
Tzvetkov, P.4
-
11
-
-
85088004955
-
Mining and summarizing customer reviews
-
M. Hu and B. Liu. Mining and summarizing customer reviews. In KDD '04.
-
KDD '04
-
-
Hu, M.1
Liu, B.2
-
13
-
-
34548571720
-
-
G. Karypis. Cluto 2.1.1 software for clustering high-dimensional datasets.
-
G. Karypis. Cluto 2.1.1 software for clustering high-dimensional datasets.
-
-
-
-
14
-
-
84962260018
-
Evaluating intrusion detection systems - the 1998 DARPA off-line intrusion detection evaluation
-
R. P. Lippmann et al. Evaluating intrusion detection systems - the 1998 DARPA off-line intrusion detection evaluation. In DISCEX '00, volume 2, pages 12-26, 2000.
-
(2000)
DISCEX '00
, vol.2
, pp. 12-26
-
-
Lippmann, R.P.1
-
15
-
-
28444481279
-
Multi-level organization and summarization of the discovered rules
-
B. Liu, M. Hu, and W. Hsu. Multi-level organization and summarization of the discovered rules. In KDD '00.
-
KDD '00
-
-
Liu, B.1
Hu, M.2
Hsu, W.3
-
16
-
-
34548584829
-
Learning non-stationary models of normal network traffic for detecting novel attacks
-
M. V. Mahoney and P. K. Chan. Learning non-stationary models of normal network traffic for detecting novel attacks. In KDD '02.
-
KDD '02
-
-
Mahoney, M.V.1
Chan, P.K.2
-
20
-
-
85012240666
-
Data mining-based intrusion detectors: An overview of the Columbia ids project
-
S. J. Stolfo, W. Lee, P. K. Chan, W. Fan, and E. Eskin. Data mining-based intrusion detectors: An overview of the Columbia ids project. SIGMOD Rec., 30(4):5-14, 2001.
-
(2001)
SIGMOD Rec
, vol.30
, Issue.4
, pp. 5-14
-
-
Stolfo, S.J.1
Lee, W.2
Chan, P.K.3
Fan, W.4
Eskin, E.5
|