-
1
-
-
34548599455
-
-
R. Agrawal, H. Mannila, R. Srikant, H. Toivonent, and A. Inkeri Verkamo. Fast discovery of association rules. In U. Fayyad and et al, editors, Advances in Knowledge Discovery and Data Mining, pages 307-326. AAAI Press, Menlo Park, CA, 1998.
-
R. Agrawal, H. Mannila, R. Srikant, H. Toivonent, and A. Inkeri Verkamo. Fast discovery of association rules. In U. Fayyad and et al, editors, Advances in Knowledge Discovery and Data Mining, pages 307-326. AAAI Press, Menlo Park, CA, 1998.
-
-
-
-
3
-
-
0036042175
-
Models and Issues in Data Stream Systems
-
ACM Press, June
-
B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and Issues in Data Stream Systems. In Proceedings of the 2002 ACM Symposium on Principles of Databases Systems (PODS 2002) (Invited Paper). ACM Press, June 2002.
-
(2002)
Proceedings of the 2002 ACM Symposium on Principles of Databases Systems (PODS 2002) (Invited Paper)
-
-
Babcock, B.1
Babu, S.2
Datar, M.3
Motwani, R.4
Widom, J.5
-
4
-
-
34548582955
-
-
Christen Borgelt. A priori implementatian, Version 4.08
-
Christen Borgelt. A priori implementatian. http://faazy.cs.Uni.Magdeburg. dr/borgelt/Software.Version 4.08.
-
-
-
-
7
-
-
34548579992
-
-
C. Giannella, Jiawei Han, Jian Pei, Xifeng Yan, and P. S. Yu. Mining Frequent Patterns in Data Streams at Multiple Time Granularities. In Proceedings of the NSF Workshop on Next Generation Data Mining, November 2002.
-
C. Giannella, Jiawei Han, Jian Pei, Xifeng Yan, and P. S. Yu. Mining Frequent Patterns in Data Streams at Multiple Time Granularities. In Proceedings of the NSF Workshop on Next Generation Data Mining, November 2002.
-
-
-
-
8
-
-
34548558495
-
-
Bart Goethals. Fp- tree implementation. http://www.cs.helsinki.fi/u/ goethals/software/index.html. Version Last Updated April 2003.
-
Bart Goethals. Fp- tree implementation. http://www.cs.helsinki.fi/u/ goethals/software/index.html. Version Last Updated April 2003.
-
-
-
-
10
-
-
0033685260
-
-
E-H. Han, G. Karypis, and V. Kumar. Scalable parallel datamining for association rules. IEEE Transactions on Data and Knowledge Engineering, 12(3), May / Jane 2000.
-
E-H. Han, G. Karypis, and V. Kumar. Scalable parallel datamining for association rules. IEEE Transactions on Data and Knowledge Engineering, 12(3), May / Jane 2000.
-
-
-
-
13
-
-
34548563294
-
An algorithm for in-core frequent itemset mining on streaming data
-
Technical Report OSU-CISRC-2/04-TR14, Ohio State University, 2904
-
Ruoming Jin and Gagan Agrawal. An algorithm for in-core frequent itemset mining on streaming data. Technical Report OSU-CISRC-2/04-TR14, Ohio State University, 2904.
-
-
-
Jin, R.1
Agrawal, G.2
-
17
-
-
0002082857
-
An efficient algorithm for mining association rules in large databases
-
A. Savasese, E. Omiecinski, and S.Navathe. An efficient algorithm for mining association rules in large databases. In 21th VLDB Conf., 1995.
-
(1995)
21th VLDB Conf
-
-
Savasese, A.1
Omiecinski, E.2
Navathe, S.3
-
19
-
-
79953236929
-
False positive or false negative: Mining frequent itemsets from high speed transactional data streams
-
Toronto, Canada, Aug
-
Jeffrey Xa Yu, Zhihong Chong, Hongjun Lu, and Aoying Zhon. False positive or false negative: Mining frequent itemsets from high speed transactional data streams. In Proceedings of the 28th International Conference on Very Large Data Bases (VLDB), Toronto, Canada, Aug 2004.
-
(2004)
Proceedings of the 28th International Conference on Very Large Data Bases (VLDB)
-
-
Yu, J.X.1
Chong, Z.2
Lu, H.3
Zhon, A.4
-
21
-
-
0033354342
-
Parallel and distributed association mining: A survey
-
Mohammed J. Zaki. Parallel and distributed association mining: A survey. IEEE Concurrency, 7(4):14-25, 1999.
-
(1999)
IEEE Concurrency
, vol.7
, Issue.4
, pp. 14-25
-
-
Zaki, M.J.1
-
22
-
-
0035788918
-
-
S. Zheng, R. Kohavi, and L. Mason. Real World Performance of Association Rule Algorithms. In Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 401-406. ACM Press, August 2901.
-
S. Zheng, R. Kohavi, and L. Mason. Real World Performance of Association Rule Algorithms. In Proceedings of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 401-406. ACM Press, August 2901.
-
-
-
|