메뉴 건너뛰기




Volumn 27, Issue 1, 2008, Pages 1-13

Orthogonal polynomials of discrete variable and boundedness of dirichlet kernel

Author keywords

Compact Jacobi matrices; Dirichlet kernel; Hilbert space; Orthogonal polynomials

Indexed keywords


EID: 34548542325     PISSN: 01764276     EISSN: 14320940     Source Type: Journal    
DOI: 10.1007/s00365-006-0645-4     Document Type: Article
Times cited : (5)

References (17)
  • 2
    • 0003362637 scopus 로고
    • An Introduction to Orthogonal Polynomials
    • New York: Gordon and Breach
    • T. CHIBARA (1978): An Introduction to Orthogonal Polynomials, Vol. 13. Mathematics and its Applications. New York: Gordon and Breach.
    • (1978) Mathematics and its Applications , vol.13
    • CHIBARA, T.1
  • 3
    • 34548533356 scopus 로고    scopus 로고
    • G. FABER (1914): Über die interpolatorische Darstellung stetiger Funktionen Jahvesbex. Deutsch. Math.Verein., 23:192-210.
    • G. FABER (1914): Über die interpolatorische Darstellung stetiger Funktionen Jahvesbex. Deutsch. Math.Verein., 23:192-210.
  • 4
    • 0030125587 scopus 로고    scopus 로고
    • A noncommutative discrete hypergroup associated with q-disk polynomials
    • P. G. A. FLORIS (1996): A noncommutative discrete hypergroup associated with q-disk polynomials. J. Comp. Appl. Math., 68:69-78.
    • (1996) J. Comp. Appl. Math , vol.68 , pp. 69-78
    • FLORIS, P.G.A.1
  • 5
    • 84951612076 scopus 로고    scopus 로고
    • Orthogonal algebraic polynomial Schauder bases of optimal degree
    • T. KILGORE, J. PRESTIN, K. SELIG (1996): Orthogonal algebraic polynomial Schauder bases of optimal degree. J. Fourier Anal. Appl., 2:597-610.
    • (1996) J. Fourier Anal. Appl , vol.2 , pp. 597-610
    • KILGORE, T.1    PRESTIN, J.2    SELIG, K.3
  • 6
    • 34548528472 scopus 로고    scopus 로고
    • T. H. KOORNWINDER (1995): Discrete hypergroups associated with compact quantum Gelfand pairs. In: Applications of Hypergroups and Related Measure Algebras (W C. Connett, M.-O. Gebuhrer, A. L. Schwartz, eds.). Contemp. Math., 183. Providence, RI: Amer. Math. Soc., pp. 213-235.
    • T. H. KOORNWINDER (1995): Discrete hypergroups associated with compact quantum Gelfand pairs. In: Applications of Hypergroups and Related Measure Algebras (W C. Connett, M.-O. Gebuhrer, A. L. Schwartz, eds.). Contemp. Math., Vol. 183. Providence, RI: Amer. Math. Soc., pp. 213-235.
  • 7
    • 0035649822 scopus 로고    scopus 로고
    • Nonnegative linearization for polynomials orthogonal with respect to discrete measures
    • W. MLOTKOWSKI, R. SZWARC (2001): Nonnegative linearization for polynomials orthogonal with respect to discrete measures. Constr. Approx., 17:413-429.
    • (2001) Constr. Approx , vol.17 , pp. 413-429
    • MLOTKOWSKI, W.1    SZWARC, R.2
  • 8
    • 0348222388 scopus 로고    scopus 로고
    • A continuous function space with a Faber basis
    • J. OBERMAIER (2003): A continuous function space with a Faber basis. J. Approx. Theory, 125:303-312.
    • (2003) J. Approx. Theory , vol.125 , pp. 303-312
    • OBERMAIER, J.1
  • 9
    • 34548538997 scopus 로고    scopus 로고
    • Polynomial bases for continuous function spaces
    • Trends and Applications in Constructive Approximation M. G. de Bruin, D. H. Mache, J. Szabados, eds, Basel: Birkhäuser, pp
    • J. O.BERMAIER, R. SZWARC (2005): Polynomial bases for continuous function spaces. In: Trends and Applications in Constructive Approximation (M. G. de Bruin, D. H. Mache, J. Szabados, eds.). International Series of Numerical Mathematics, Vol. 151. Basel: Birkhäuser, pp. 195-205.
    • (2005) International Series of Numerical Mathematics , vol.151 , pp. 195-205
    • BERMAIER, J.O.1    SZWARC, R.2
  • 10
    • 33748973739 scopus 로고    scopus 로고
    • Nonnegative linearization for little q-Laguerre polynomials and Faber basis
    • J. OBERMAIER, R. SZWARC (to appear): Nonnegative linearization for little q-Laguerre polynomials and Faber basis. J. Comput. Appl. Math.
    • J. Comput. Appl. Math
    • OBERMAIER, J.1    SZWARC, R.2
  • 11
    • 0007236115 scopus 로고
    • Growth of the degrees of polynomial basis and approximation of trigonometric projectors
    • AL. A. PRIVALOV (1987): Growth of the degrees of polynomial basis and approximation of trigonometric projectors. Mat. Zametki, 42:207-214.
    • (1987) Mat. Zametki , vol.42 , pp. 207-214
    • PRIVALOV, A.A.1
  • 12
    • 0007236114 scopus 로고
    • Growth of degrees of polynomial basis
    • AL. A. PRIVALOV (1990): Growth of degrees of polynomial basis. Mat. Zametki, 48:69-78.
    • (1990) Mat. Zametki , vol.48 , pp. 69-78
    • PRIVALOV, A.A.1
  • 13
    • 0040995798 scopus 로고
    • 1-Convolution algebras: Representation andfactorication
    • 1-Convolution algebras: Representation andfactorication. Z. Wahrsch. Verw. Gebiete, 41:161-176.
    • (1977) Z. Wahrsch. Verw. Gebiete , vol.41 , pp. 161-176
    • SCHWARTZ, A.1
  • 14
    • 34548530268 scopus 로고    scopus 로고
    • I. SINGER (197.1): Bases in Banch Spaces I. Heidelberg: Springer-Verlag.
    • I. SINGER (197.1): Bases in Banch Spaces I. Heidelberg: Springer-Verlag.
  • 15
    • 0348057845 scopus 로고    scopus 로고
    • Orthogonal polynomial Schauder bases in C[-1, 1] with optimal growth of degrees
    • M. SKOPINA (2001): Orthogonal polynomial Schauder bases in C[-1, 1] with optimal growth of degrees. Mat. Sb., 192(3): 115-136.
    • (2001) Mat. Sb , vol.192 , Issue.3 , pp. 115-136
    • SKOPINA, M.1
  • 16
    • 0004073954 scopus 로고
    • 4th ed. AMS Colloquium Publications, Providence, RI: Amer. Math. Soc
    • G. SZEGO (1975): Orthogonal Polynomials, 4th ed. AMS Colloquium Publications, Vol. 23. Providence, RI: Amer. Math. Soc.
    • (1975) Orthogonal Polynomials , vol.23
    • SZEGO, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.