메뉴 건너뛰기




Volumn 154, Issue 17, 2007, Pages 3100-3106

Coincidence and fixed points for maps on topological spaces

Author keywords

Coincidence; Completely regular topological spaces; Fixed point; Pseudo compact space

Indexed keywords


EID: 34548483228     PISSN: 01668641     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.topol.2007.08.004     Document Type: Article
Times cited : (24)

References (11)
  • 1
    • 25744479132 scopus 로고
    • Fixed-point theorems in topological spaces
    • Ćirić L.B. Fixed-point theorems in topological spaces. Fund. Math. LXXXVII (1975) 1-5
    • (1975) Fund. Math. , vol.LXXXVII , pp. 1-5
    • Ćirić, L.B.1
  • 2
    • 40349116185 scopus 로고    scopus 로고
    • The existence theorems for fixed and periodic points of nonexpansive mappings in intuitionistic fuzzy metric spaces
    • 10.1016/j.chaos.2006.09.093 in press, corrected proof, available online 19 December 2006
    • Ćirić L.B., Jesić S.N., and Ume J.S. The existence theorems for fixed and periodic points of nonexpansive mappings in intuitionistic fuzzy metric spaces. Chaos, Solitons and Fractals (2006) 10.1016/j.chaos.2006.09.093 in press, corrected proof, available online 19 December 2006
    • (2006) Chaos, Solitons and Fractals
    • Ćirić, L.B.1    Jesić, S.N.2    Ume, J.S.3
  • 3
    • 0004418424 scopus 로고    scopus 로고
    • Denotational models for programming languages: applications of Banach's Fixed Point Theorem
    • de Bakker W., and de Vink E.P. Denotational models for programming languages: applications of Banach's Fixed Point Theorem. Topology Appl. 85 (1998) 35-52
    • (1998) Topology Appl. , vol.85 , pp. 35-52
    • de Bakker, W.1    de Vink, E.P.2
  • 4
    • 84963019042 scopus 로고
    • On fixed and periodic points under contractive mappings
    • Edelstein M. On fixed and periodic points under contractive mappings. J. London Math. Soc. 37 (1962) 74-79
    • (1962) J. London Math. Soc. , vol.37 , pp. 74-79
    • Edelstein, M.1
  • 5
    • 84958299794 scopus 로고
    • Common fixed points for commuting and compatible maps on compacta
    • Jungck G. Common fixed points for commuting and compatible maps on compacta. Proc. Amer. Math. Soc. 103 3 (1988) 977-983
    • (1988) Proc. Amer. Math. Soc. , vol.103 , Issue.3 , pp. 977-983
    • Jungck, G.1
  • 6
    • 27244439145 scopus 로고
    • Some fixed point theorems in compact Hausdorff spaces
    • Liu Z. Some fixed point theorems in compact Hausdorff spaces. Indian J. Math. 36 3 (1994) 235-239
    • (1994) Indian J. Math. , vol.36 , Issue.3 , pp. 235-239
    • Liu, Z.1
  • 7
    • 27244439633 scopus 로고    scopus 로고
    • Coincidence and common fixed point theorems in compact Hausdorff spaces
    • Liu Z., Gao H., Kang S.M., and Kim Y.S. Coincidence and common fixed point theorems in compact Hausdorff spaces. Inter. J. Math. Math. Sci. 6 (2005) 845-853
    • (2005) Inter. J. Math. Math. Sci. , vol.6 , pp. 845-853
    • Liu, Z.1    Gao, H.2    Kang, S.M.3    Kim, Y.S.4
  • 8
    • 0003973698 scopus 로고
    • Fixed points of f-contractive maps
    • Park S. Fixed points of f-contractive maps. Rocky Mountain J. Math. 8 4 (1978) 743-750
    • (1978) Rocky Mountain J. Math. , vol.8 , Issue.4 , pp. 743-750
    • Park, S.1
  • 9
    • 34248344678 scopus 로고    scopus 로고
    • The Banach fixed point theorem in fuzzy quasi-metric spaces with application to the domain of words
    • Romaguera S., Sapena A., and Tirado P. The Banach fixed point theorem in fuzzy quasi-metric spaces with application to the domain of words. Topology Appl. 154 10 (2007) 2196-2203
    • (2007) Topology Appl. , vol.154 , Issue.10 , pp. 2196-2203
    • Romaguera, S.1    Sapena, A.2    Tirado, P.3
  • 10
    • 27244446852 scopus 로고
    • Coincidence and fixed points for four mappings
    • Singh S.L., and Rao K.P.R. Coincidence and fixed points for four mappings. Indian J. Math. 31 3 (1989) 215-223
    • (1989) Indian J. Math. , vol.31 , Issue.3 , pp. 215-223
    • Singh, S.L.1    Rao, K.P.R.2
  • 11
    • 33846829902 scopus 로고    scopus 로고
    • Chaos synchronization based on contraction principle
    • Wang J., and Zhou T. Chaos synchronization based on contraction principle. Chaos, Solitons & Fractals 33 (2007) 163-170
    • (2007) Chaos, Solitons & Fractals , vol.33 , pp. 163-170
    • Wang, J.1    Zhou, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.