-
1
-
-
21444457053
-
The geometric ergodicity of nonlinear autoregressive models
-
An H.Z., and Huang F.C. The geometric ergodicity of nonlinear autoregressive models. Stat. Sinica 6 (1996) 943-956
-
(1996)
Stat. Sinica
, vol.6
, pp. 943-956
-
-
An, H.Z.1
Huang, F.C.2
-
2
-
-
0000390031
-
Basic properties of strong mixing conditions
-
Eberlein E., and Taqqu M.S. (Eds), Birkhäuser, Boston
-
Bradley R. Basic properties of strong mixing conditions. In: Eberlein E., and Taqqu M.S. (Eds). Dependence in Probability and Statistics: A Survey of Recent Results (1986), Birkhäuser, Boston 165-192
-
(1986)
Dependence in Probability and Statistics: A Survey of Recent Results
, pp. 165-192
-
-
Bradley, R.1
-
3
-
-
0000775422
-
Local-geometric-projection method for noise reduction in chaotic maps and flows
-
Cawley R., and Hsu G. Local-geometric-projection method for noise reduction in chaotic maps and flows. Phys. Rev. A 46 (1992) 3057-3082
-
(1992)
Phys. Rev. A
, vol.46
, pp. 3057-3082
-
-
Cawley, R.1
Hsu, G.2
-
5
-
-
34250141475
-
Propriétés de convergence presque complète du prédicteur à noyau
-
Collomb G. Propriétés de convergence presque complète du prédicteur à noyau. Z. Wahrscheinlichkeitstheorie verw. Geviete 66 (1984) 441-460
-
(1984)
Z. Wahrscheinlichkeitstheorie verw. Geviete
, vol.66
, pp. 441-460
-
-
Collomb, G.1
-
6
-
-
0042259193
-
Can noise induce chaos?
-
Dennis B., Desharnais R.A., Cushing J.M., Henson S.M., and Costantino R.F. Can noise induce chaos?. OIKOS 102 (2003) 329-339
-
(2003)
OIKOS
, vol.102
, pp. 329-339
-
-
Dennis, B.1
Desharnais, R.A.2
Cushing, J.M.3
Henson, S.M.4
Costantino, R.F.5
-
7
-
-
33947575953
-
Estimating the embedding dimension and delay time from chaotic time series with dynamic noise
-
Fueda K., and Yanagawa T. Estimating the embedding dimension and delay time from chaotic time series with dynamic noise. J. Japan Statist. Soc. 31 1 (2001) 27-38
-
(2001)
J. Japan Statist. Soc.
, vol.31
, Issue.1
, pp. 27-38
-
-
Fueda, K.1
Yanagawa, T.2
-
8
-
-
0002591468
-
A two-dimensional mapping with a strange attractor
-
Henon M. A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50 (1976) 69-77
-
(1976)
Commun. Math. Phys.
, vol.50
, pp. 69-77
-
-
Henon, M.1
-
9
-
-
17044390878
-
Noise reduction-finding the simplest dynamical system consistent with the data
-
Kostelich K., and Yorke J.A. Noise reduction-finding the simplest dynamical system consistent with the data. Physica D 41 (1990) 183-196
-
(1990)
Physica D
, vol.41
, pp. 183-196
-
-
Kostelich, K.1
Yorke, J.A.2
-
10
-
-
84995353945
-
A comparison of methods for constructing a phase space and determining the dimension of an attractor from experimental data
-
Landa P.S., and Rozenblum M.G. A comparison of methods for constructing a phase space and determining the dimension of an attractor from experimental data. Sov. Phys. Tech. Phys. 34 (1989) 1229-1232
-
(1989)
Sov. Phys. Tech. Phys.
, vol.34
, pp. 1229-1232
-
-
Landa, P.S.1
Rozenblum, M.G.2
-
11
-
-
6944236669
-
Estimating the Lyapunov exponent of a chaotic system with nonparametric regression
-
McCaffrey D.F., Ellner S., Gallant A.R., and Nychka D. Estimating the Lyapunov exponent of a chaotic system with nonparametric regression. J. Amer. Statist. Assoc. 87 (1992) 682-695
-
(1992)
J. Amer. Statist. Assoc.
, vol.87
, pp. 682-695
-
-
McCaffrey, D.F.1
Ellner, S.2
Gallant, A.R.3
Nychka, D.4
-
12
-
-
0000570382
-
On estimating regression
-
Nadaraya E.A. On estimating regression. Theory Probab. Appl. 9 (1964) 141-142
-
(1964)
Theory Probab. Appl.
, vol.9
, pp. 141-142
-
-
Nadaraya, E.A.1
-
13
-
-
34548489284
-
Discrete-time dynamic noise filtering
-
Pikovsky A.S. Discrete-time dynamic noise filtering. Radio. Eng. Electron. Phys. 9 (1986) 81
-
(1986)
Radio. Eng. Electron. Phys.
, vol.9
, pp. 81
-
-
Pikovsky, A.S.1
-
14
-
-
44049113048
-
A noise reduction method for signals from nonlinear systems
-
Sauer T. A noise reduction method for signals from nonlinear systems. Physica D 58 (1992) 193-201
-
(1992)
Physica D
, vol.58
, pp. 193-201
-
-
Sauer, T.1
-
15
-
-
0001762424
-
Smooth regression analysis
-
Watson G.S. Smooth regression analysis. Sankhyā Ser. A 26 (1964) 359-372
-
(1964)
Sankhyā Ser. A
, vol.26
, pp. 359-372
-
-
Watson, G.S.1
-
16
-
-
0002835545
-
The asymptotic distribution of nonparametric estimates of the Lyapunov exponent for stochastic time series
-
Whang Y., and Linton O. The asymptotic distribution of nonparametric estimates of the Lyapunov exponent for stochastic time series. J. Econometrics 91 (1999) 1-42
-
(1999)
J. Econometrics
, vol.91
, pp. 1-42
-
-
Whang, Y.1
Linton, O.2
-
17
-
-
0001419994
-
Quantifying the influence of initial value on nonlinear prediction
-
Yao Q., and Tong H. Quantifying the influence of initial value on nonlinear prediction. J. R. Stat. Soc. B56 (1994) 701-725
-
(1994)
J. R. Stat. Soc.
, vol.B56
, pp. 701-725
-
-
Yao, Q.1
Tong, H.2
-
18
-
-
34548484687
-
Estimating the embedding dimension and delay time of chaotic time series by an autoregressive model
-
Yonemoto K., and Yanagawa T. Estimating the embedding dimension and delay time of chaotic time series by an autoregressive model. Bull. Inform. Cybernet. 33 1-2 (2001) 53-62
-
(2001)
Bull. Inform. Cybernet.
, vol.33
, Issue.1-2
, pp. 53-62
-
-
Yonemoto, K.1
Yanagawa, T.2
|