메뉴 건너뛰기




Volumn 22, Issue 9, 2007, Pages 909-941

Local identification of prototypes for genetic learning of accurate TSK fuzzy rule-based systems

Author keywords

[No Author keywords available]

Indexed keywords

FUZZY RULES; GENETIC ALGORITHMS; ITERATIVE METHODS; KNOWLEDGE BASED SYSTEMS; SEMANTICS; SOFTWARE PROTOTYPING;

EID: 34548402937     PISSN: 08848173     EISSN: 1098111X     Source Type: Journal    
DOI: 10.1002/int.20232     Document Type: Article
Times cited : (64)

References (56)
  • 1
    • 0016368711 scopus 로고
    • Application of fuzzy algorithms for control of simple dynamic plant
    • Mamdani EH. Application of fuzzy algorithms for control of simple dynamic plant. Proc Inst Electr Eng 1974; 121:1585-1588.
    • (1974) Proc Inst Electr Eng , vol.121 , pp. 1585-1588
    • Mamdani, E.H.1
  • 2
    • 0027544110 scopus 로고
    • A fuzzy-logic-based approach to qualitative modeling
    • Sugeno M, Yasukawa T. A fuzzy-logic-based approach to qualitative modeling. IEEE Trans Fuzzy Syst 1993; 1:7-31.
    • (1993) IEEE Trans Fuzzy Syst , vol.1 , pp. 7-31
    • Sugeno, M.1    Yasukawa, T.2
  • 3
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its application to modeling and control
    • Takagi T, Sugeno M. Fuzzy identification of systems and its application to modeling and control. IEEE Trans Syst Man Cybern 1985; 15:116-132.
    • (1985) IEEE Trans Syst Man Cybern , vol.15 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 5
    • 0036791593 scopus 로고    scopus 로고
    • Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models
    • Abonyi J. Babuška R. Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models. IEEE Trans Syst Man Cybern B Cybern 2002;32:612-621.
    • (2002) IEEE Trans Syst Man Cybern B Cybern , vol.32 , pp. 612-621
    • Abonyi, J.1    Babuška, R.2
  • 6
    • 0035696162 scopus 로고    scopus 로고
    • Robust TSK fuzzy modeling for function approximation with outliers
    • Chuang CC, Su SF, Chen SS. Robust TSK fuzzy modeling for function approximation with outliers. IEEE Trans Fuzzy Syst 2001;9:810-821.
    • (2001) IEEE Trans Fuzzy Syst , vol.9 , pp. 810-821
    • Chuang, C.C.1    Su, S.F.2    Chen, S.S.3
  • 8
    • 0141919673 scopus 로고    scopus 로고
    • On-line heart beat recognition using hermite polynomials and neuro-fuzzy network
    • Linh TH, Osowski S, Stodolski M. On-line heart beat recognition using hermite polynomials and neuro-fuzzy network. IEEE Trans Instrum Meas 2003;52:1224-1231.
    • (2003) IEEE Trans Instrum Meas , vol.52 , pp. 1224-1231
    • Linh, T.H.1    Osowski, S.2    Stodolski, M.3
  • 9
    • 0037308031 scopus 로고    scopus 로고
    • Improved fuzzy partitions for fuzzy regression models
    • Höppner F, Klawonn F. Improved fuzzy partitions for fuzzy regression models. Int J Approx Reason 2003;32:85-102.
    • (2003) Int J Approx Reason , vol.32 , pp. 85-102
    • Höppner, F.1    Klawonn, F.2
  • 11
    • 0031146974 scopus 로고    scopus 로고
    • A fuzzy clustering based rapid-prototyping for fuzzy rule-based modeling
    • Delgado M, Gómez-Skarmeta AF, Martín F. A fuzzy clustering based rapid-prototyping for fuzzy rule-based modeling. IEEE Trans Fuzzy Syst 1997;5:223-233.
    • (1997) IEEE Trans Fuzzy Syst , vol.5 , pp. 223-233
    • Delgado, M.1    Gómez-Skarmeta, A.F.2    Martín, F.3
  • 12
    • 0038199533 scopus 로고    scopus 로고
    • Kumar A, Agrawal DP, Joshi SD. A GA-based method for constructing TSK fuzzy rules from numerical data. In: Proc 12th IEEE Int Conf on Fuzzy Systems (FUZZ'03); 2003. pp 131-136.
    • Kumar A, Agrawal DP, Joshi SD. A GA-based method for constructing TSK fuzzy rules from numerical data. In: Proc 12th IEEE Int Conf on Fuzzy Systems (FUZZ'03); 2003. pp 131-136.
  • 13
    • 0035899796 scopus 로고    scopus 로고
    • Fuzzy clustering and switching regression models using ambiguity and distance rejects
    • Ménard M. Fuzzy clustering and switching regression models using ambiguity and distance rejects. Fuzzy Set Syst 2001;122:363-399.
    • (2001) Fuzzy Set Syst , vol.122 , pp. 363-399
    • Ménard, M.1
  • 14
    • 0014534297 scopus 로고
    • A new approach to clustering
    • Ruspini EH. A new approach to clustering. Inform Contr 1969;15:22-32.
    • (1969) Inform Contr , vol.15 , pp. 22-32
    • Ruspini, E.H.1
  • 15
    • 0003306048 scopus 로고    scopus 로고
    • Fuzzy clustering
    • Ruspini EH, Bonisone PP, Pedrycz W, editors, Amsterdam: Institute of Physics Press;
    • Bezdek JC. Fuzzy clustering. In: Ruspini EH, Bonisone PP, Pedrycz W, editors. Handbook of computation. Amsterdam: Institute of Physics Press; 1998.
    • (1998) Handbook of computation
    • Bezdek, J.C.1
  • 17
    • 0033317446 scopus 로고    scopus 로고
    • MOGUL: A methodology to obtain genetic fuzzy rule-based systems under the iterative rule learning approach
    • Cordón O, del Jesus MJ, Herrera F, Lozano M. MOGUL: A methodology to obtain genetic fuzzy rule-based systems under the iterative rule learning approach. Int J Intell Syst 1999;14:1123-1153.
    • (1999) Int J Intell Syst , vol.14 , pp. 1123-1153
    • Cordón, O.1    del Jesus, M.J.2    Herrera, F.3    Lozano, M.4
  • 18
    • 0036601484 scopus 로고    scopus 로고
    • Fuzzy logic approaches to structure preserving dimensionality reduction
    • Pal N, Eluri VK, Mandal GK. Fuzzy logic approaches to structure preserving dimensionality reduction. IEEE Trans Fuzzy Syst 2002;10:277-286.
    • (2002) IEEE Trans Fuzzy Syst , vol.10 , pp. 277-286
    • Pal, N.1    Eluri, V.K.2    Mandal, G.K.3
  • 19
    • 0033078615 scopus 로고    scopus 로고
    • Simplifying fuzzy rule-based models using orthogonal transformation methods
    • Yen J, Wang L. Simplifying fuzzy rule-based models using orthogonal transformation methods. IEEE Trans Syst Man Cybern B Cybern 1999;29:13-24.
    • (1999) IEEE Trans Syst Man Cybern B Cybern , vol.29 , pp. 13-24
    • Yen, J.1    Wang, L.2
  • 21
    • 0034153033 scopus 로고    scopus 로고
    • A constrained Takagi-Sugeno fuzzy system that allows for better interpretation and analysis
    • Fiordaliso A. A constrained Takagi-Sugeno fuzzy system that allows for better interpretation and analysis. Fuzzy Set Syst 2001;118:307-318.
    • (2001) Fuzzy Set Syst , vol.118 , pp. 307-318
    • Fiordaliso, A.1
  • 22
    • 0032205732 scopus 로고    scopus 로고
    • Improving the interpretability of TSK fuzzy models by combining global learning and local learning
    • Yen J, Wang L, Gillespie CW. Improving the interpretability of TSK fuzzy models by combining global learning and local learning. IEEE Trans Fuzzy Syst 1998;6:530-537.
    • (1998) IEEE Trans Fuzzy Syst , vol.6 , pp. 530-537
    • Yen, J.1    Wang, L.2    Gillespie, C.W.3
  • 23
    • 10444269610 scopus 로고    scopus 로고
    • Interpretability issues in fuzzy modeling
    • Casillas J, Cordón O, Herrera F, Magdalena L, editors, Heidelberg: Springer;
    • Casillas J, Cordón O, Herrera F, Magdalena L, editors. Interpretability issues in fuzzy modeling. Studies in Fuzziness and Soft Computing, vol. 128. Heidelberg: Springer; 2003.
    • (2003) Studies in Fuzziness and Soft Computing , vol.128
  • 24
    • 33646055909 scopus 로고    scopus 로고
    • Accuracy improvements in linguistic fuzzy modeling
    • Casillas J, Cordón O, Herrera F, Magdalena L, editors, Heidelberg: Springer;
    • Casillas J, Cordón O, Herrera F, Magdalena L, editors. Accuracy improvements in linguistic fuzzy modeling. Studies in Fuzziness and Soft Computing, vol. 129. Heidelberg: Springer; 2003.
    • (2003) Studies in Fuzziness and Soft Computing , vol.129
  • 25
    • 16444372656 scopus 로고    scopus 로고
    • Rule-based models of multivariable functions
    • Pedrycz W, Reformat M. Rule-based models of multivariable functions. Fuzzy Set Syst 1997;90:235-253.
    • (1997) Fuzzy Set Syst , vol.90 , pp. 235-253
    • Pedrycz, W.1    Reformat, M.2
  • 26
    • 0035426538 scopus 로고    scopus 로고
    • Genetic programming for model selection of TSK-fuzzy systems
    • Hoffmann F, Nelles O. Genetic programming for model selection of TSK-fuzzy systems. Inform Sci 2001;136:7-28.
    • (2001) Inform Sci , vol.136 , pp. 7-28
    • Hoffmann, F.1    Nelles, O.2
  • 27
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • Jang JR. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 1993;23:665-684.
    • (1993) IEEE Trans Syst Man Cybern , vol.23 , pp. 665-684
    • Jang, J.R.1
  • 29
    • 0018057468 scopus 로고
    • Fuzzy clustering with a fuzzy covariance matrix
    • San Diego;
    • Gustafson D, Kessel W. Fuzzy clustering with a fuzzy covariance matrix. In: Proc IEEE CDC, San Diego; 1979. pp 761-766.
    • (1979) Proc IEEE CDC , pp. 761-766
    • Gustafson, D.1    Kessel, W.2
  • 31
    • 0033281103 scopus 로고    scopus 로고
    • A two-stage evolutionary process for designing TSK fuzzy rule-based systems
    • Cordón O, Herrera F. A two-stage evolutionary process for designing TSK fuzzy rule-based systems. IEEE Trans Syst Man Cybern B Cybern 1999;29:703-715.
    • (1999) IEEE Trans Syst Man Cybern B Cybern , vol.29 , pp. 703-715
    • Cordón, O.1    Herrera, F.2
  • 32
    • 0037120676 scopus 로고    scopus 로고
    • Papadakis SE, Theocharis JB. A GA-based fuzzy modeling approach for generating TSK models. Fuzzy Set Syst 2002;131:121-152.
    • Papadakis SE, Theocharis JB. A GA-based fuzzy modeling approach for generating TSK models. Fuzzy Set Syst 2002;131:121-152.
  • 33
    • 0042864607 scopus 로고    scopus 로고
    • Robust fuzzy neural network control for nonlinear motor-toggle servomechanism
    • Wai RJ. Robust fuzzy neural network control for nonlinear motor-toggle servomechanism. Fuzzy Set Syst 2003;139:185-208.
    • (2003) Fuzzy Set Syst , vol.139 , pp. 185-208
    • Wai, R.J.1
  • 34
    • 0000475188 scopus 로고
    • How to handle the flexibility of linguistic variables with applications
    • Bastian A. How to handle the flexibility of linguistic variables with applications. Int J Uncertainty Fuzziness Knowl Base Syst 1994;2:463-484.
    • (1994) Int J Uncertainty Fuzziness Knowl Base Syst , vol.2 , pp. 463-484
    • Bastian, A.1
  • 36
    • 0031268161 scopus 로고    scopus 로고
    • A three-stage evolutionary process for learning descriptive and approximate fuzzy logic controller knowledge bases
    • Cordón O, Herrera F. A three-stage evolutionary process for learning descriptive and approximate fuzzy logic controller knowledge bases. Int J Approx Reason 1997;17:369-407.
    • (1997) Int J Approx Reason , vol.17 , pp. 369-407
    • Cordón, O.1    Herrera, F.2
  • 37
    • 0032069167 scopus 로고    scopus 로고
    • Completeness and consistency conditions for learning fuzzy rules
    • González A, Pérez R. Completeness and consistency conditions for learning fuzzy rules. Fuzzy Set Syst 1998;96:37-51.
    • (1998) Fuzzy Set Syst , vol.96 , pp. 37-51
    • González, A.1    Pérez, R.2
  • 38
    • 0000938740 scopus 로고    scopus 로고
    • A learning process for fuzzy control rules using genetic algorithms
    • Herrera F, Lozano M, Verdegay JL. A learning process for fuzzy control rules using genetic algorithms. Fuzzy Set Syst 1998;100:143-158.
    • (1998) Fuzzy Set Syst , vol.100 , pp. 143-158
    • Herrera, F.1    Lozano, M.2    Verdegay, J.L.3
  • 39
    • 0037782746 scopus 로고    scopus 로고
    • Hybridizing genetic algorithms with sharing scheme and evolution strategies for designing approximate fuzzy rule-based systems
    • Cordón O, Herrera F. Hybridizing genetic algorithms with sharing scheme and evolution strategies for designing approximate fuzzy rule-based systems. Fuzzy Set Syst 2001;118:235-255.
    • (2001) Fuzzy Set Syst , vol.118 , pp. 235-255
    • Cordón, O.1    Herrera, F.2
  • 40
    • 0029359001 scopus 로고
    • Selecting fuzzy if-then rules for classification problems using genetic algorithms
    • Ishibuchi H, Nozaki K, Yamamoto N, Tanaka H. Selecting fuzzy if-then rules for classification problems using genetic algorithms. IEEE Trans Fuzzy Syst 1995;9:260-270.
    • (1995) IEEE Trans Fuzzy Syst , vol.9 , pp. 260-270
    • Ishibuchi, H.1    Nozaki, K.2    Yamamoto, N.3    Tanaka, H.4
  • 41
    • 0000919523 scopus 로고    scopus 로고
    • Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems
    • Ishibuchi H, Murata T, Türksen IB. Single-objective and two-objective genetic algorithms for selecting linguistic rules for pattern classification problems. Fuzzy Set Syst 1997;89:135-150.
    • (1997) Fuzzy Set Syst , vol.89 , pp. 135-150
    • Ishibuchi, H.1    Murata, T.2    Türksen, I.B.3
  • 42
    • 0000401181 scopus 로고
    • A sequential niche technique for multimodal function optimization
    • Beasley D, Bull DR, Martin RR. A sequential niche technique for multimodal function optimization. Evol Comput 1993;1:2:101-125.
    • (1993) Evol Comput , vol.1 , Issue.2 , pp. 101-125
    • Beasley, D.1    Bull, D.R.2    Martin, R.R.3
  • 43
    • 0002035566 scopus 로고
    • Reducing bias and inefficiency in the selection algorithm
    • Grefenstette JJ, editor, Hillsdale, NJ: Lawrence Erlbaum;
    • Baker JE. Reducing bias and inefficiency in the selection algorithm. In: Grefenstette JJ, editor. Proc Second Int Conf on Genetic Algorithms. Hillsdale, NJ: Lawrence Erlbaum; 1987. pp 14-21.
    • (1987) Proc Second Int Conf on Genetic Algorithms , pp. 14-21
    • Baker, J.E.1
  • 44
    • 0032136585 scopus 로고    scopus 로고
    • Tackling real-coded genetic algorithms: Operators and tools for the behaviour analysis
    • Herrera F, Lozano M, Verdegay JL. Tackling real-coded genetic algorithms: Operators and tools for the behaviour analysis. Artif Intell Rev 1998;12:265-319.
    • (1998) Artif Intell Rev , vol.12 , pp. 265-319
    • Herrera, F.1    Lozano, M.2    Verdegay, J.L.3
  • 46
    • 0032674647 scopus 로고    scopus 로고
    • Solving electrical distribution problems using hybrid evolutionary data analysis techniques
    • Cordón O, Herrera F, Sánchez L. Solving electrical distribution problems using hybrid evolutionary data analysis techniques. Appl Intell 1999;10:5-24.
    • (1999) Appl Intell , vol.10 , pp. 5-24
    • Cordón, O.1    Herrera, F.2    Sánchez, L.3
  • 47
    • 0006691586 scopus 로고
    • The variable sun
    • Foukal PV. The variable sun. Sci Am 1990;262:34-41.
    • (1990) Sci Am , vol.262 , pp. 34-41
    • Foukal, P.V.1
  • 48
    • 0038076657 scopus 로고    scopus 로고
    • Neural network toolbox for use with MATLAB
    • Version 3.0. Natick, MA: The MathWorks, Inc
    • Demuth H, Beale M. Neural network toolbox for use with MATLAB. User's guide. Version 3.0. Natick, MA: The MathWorks, Inc.; 1998.
    • (1998) User's guide
    • Demuth, H.1    Beale, M.2
  • 50
    • 0026943536 scopus 로고
    • Generating fuzzy rules by learning from examples
    • Wang LX, Mendel JM. Generating fuzzy rules by learning from examples. IEEE Trans Syst Man Cybern 1992;22:1414-1427.
    • (1992) IEEE Trans Syst Man Cybern , vol.22 , pp. 1414-1427
    • Wang, L.X.1    Mendel, J.M.2
  • 52
    • 0001603936 scopus 로고
    • Tuning fuzzy logic controllers by genetic algorithms
    • Herrera F, Lozano M, Verdegay JL. Tuning fuzzy logic controllers by genetic algorithms. Int J Approx Reason 1995;12:299-315.
    • (1995) Int J Approx Reason , vol.12 , pp. 299-315
    • Herrera, F.1    Lozano, M.2    Verdegay, J.L.3
  • 54
    • 84901477027 scopus 로고    scopus 로고
    • Angeline PJ. Evolving predictors for chaotic time series. In: Proc SPIE: Application and Science of Computational Intelligence (SPIE'98), Bellingham, WA; 1998. pp 170-180.
    • Angeline PJ. Evolving predictors for chaotic time series. In: Proc SPIE: Application and Science of Computational Intelligence (SPIE'98), Bellingham, WA; 1998. pp 170-180.
  • 55


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.