메뉴 건너뛰기




Volumn 63, Issue 3, 2007, Pages 881-891

A mixed Mover-Stayer model for spatiotemporal two-state processes

Author keywords

Intrinsic autoregressive model; Mixed Markov model; Monte Carlo EM algorithm; Mover Stayer model; Spatiotemporal binary data

Indexed keywords

FORESTRY; IMAGE SEGMENTATION; MARKOV PROCESSES; MAXIMUM PRINCIPLE; MONTE CARLO METHODS; REGRESSION ANALYSIS;

EID: 34548387629     PISSN: 0006341X     EISSN: 15410420     Source Type: Journal    
DOI: 10.1111/j.1541-0420.2007.00752.x     Document Type: Article
Times cited : (5)

References (25)
  • 1
    • 0032527753 scopus 로고    scopus 로고
    • A two-state Markov chain for heterogeneous transitional data: A quasi-likelihood approach
    • Albert, P. S. and Waclawiw, M. A. (1998). A two-state Markov chain for heterogeneous transitional data: A quasi-likelihood approach. Statistics in Medicine 17, 1481 1493.
    • (1998) Statistics in Medicine , vol.17 , pp. 1481-1493
    • Albert, P.S.1    Waclawiw, M.A.2
  • 4
    • 0000913755 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems (with discussion)
    • Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems (with discussion). Journal of the Royal Statistical Society, Series B 36, 192 236.
    • (1974) Journal of the Royal Statistical Society, Series B , vol.36 , pp. 192-236
    • Besag, J.1
  • 7
    • 85153218541 scopus 로고    scopus 로고
    • Maximum likelihood estimation for probit-linear mixed models with correlated random effects
    • Chan, J. S. K. and Kuk, A. Y. C. (1997). Maximum likelihood estimation for probit-linear mixed models with correlated random effects. Biometrics 88, 9 25.
    • (1997) Biometrics , vol.88 , pp. 9-25
    • Chan, J.S.K.1    Kuk, A.Y.C.2
  • 9
    • 0030893268 scopus 로고    scopus 로고
    • A logistic-bivariate normal model for overdispersed two-state Markov processes
    • Cook, R. J. and Ng, E. T. M. (1997). A logistic-bivariate normal model for overdispersed two-state Markov processes. Biometrics 52, 358 364.
    • (1997) Biometrics , vol.52 , pp. 358-364
    • Cook, R.J.1    Ng, E.T.M.2
  • 10
    • 0347230084 scopus 로고    scopus 로고
    • A generalized Mover-Stayer model for panel data
    • and
    • Cook, R. J., Kalbfleisch, J. D., and Yi, G. Y. (2002). A generalized Mover-Stayer model for panel data. Biostatistics 3, 407 420.
    • (2002) Biostatistics , vol.3 , pp. 407-420
    • Cook, R.J.1    Kalbfleisch, J.D.2    Yi, G.Y.3
  • 13
  • 14
    • 0023747553 scopus 로고
    • The EM algorithm for maximum likelihood estimation in the Mover-Stayer model
    • Fuchs, C. and Greenhouse, J. B. (1988). The EM algorithm for maximum likelihood estimation in the Mover-Stayer model. Biometrics 44, 605 613.
    • (1988) Biometrics , vol.44 , pp. 605-613
    • Fuchs, C.1    Greenhouse, J.B.2
  • 15
    • 0141767040 scopus 로고    scopus 로고
    • Proper multivariate conditional autoregressive models for spatial data analysis
    • Gelfand, A. E. and Vounatsou, P. (2003). Proper multivariate conditional autoregressive models for spatial data analysis. Biostatistics 4, 11 25.
    • (2003) Biostatistics , vol.4 , pp. 11-25
    • Gelfand, A.E.1    Vounatsou, P.2
  • 16
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences (with discussion)
    • Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences (with discussion). Statistical Science 7, 457 511.
    • (1992) Statistical Science , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.B.2
  • 17
    • 0030336576 scopus 로고
    • Bias correction in generalized linear mixed models with multiple components of dispersion
    • Lin, X. and Breslow, N. E. (1993). Bias correction in generalized linear mixed models with multiple components of dispersion. Journal of the American Statistical Association 91, 1007 1016.
    • (1993) Journal of the American Statistical Association , vol.91 , pp. 1007-1016
    • Lin, X.1    Breslow, N.E.2
  • 18
    • 0001044972 scopus 로고
    • Finding the observed information matrix when using the EM algorithm
    • Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society, Series B 44, 226 233.
    • (1982) Journal of the Royal Statistical Society, Series B , vol.44 , pp. 226-233
    • Louis, T.A.1
  • 19
    • 0034863468 scopus 로고    scopus 로고
    • Autoregressive spatial smoothing and temporal spline smoothing for mapping rates
    • MacNab, Y. and Dean, C. B. (2001). Autoregressive spatial smoothing and temporal spline smoothing for mapping rates. Biometrics 57, 949 956.
    • (2001) Biometrics , vol.57 , pp. 949-956
    • MacNab, Y.1    Dean, C.B.2
  • 20
    • 0031479575 scopus 로고    scopus 로고
    • Maximum likelihood algorithms for generalized linear mixed models
    • McCulloch, C. E. (1997). Maximum likelihood algorithms for generalized linear mixed models. Journal of the American Statistical Association 92, 162 170.
    • (1997) Journal of the American Statistical Association , vol.92 , pp. 162-170
    • McCulloch, C.E.1
  • 21
    • 0022036349 scopus 로고
    • Markov models for covariate dependence of binary sequences
    • Muenz, L. R. and Rubinstein, L. V. (1985). Markov models for covariate dependence of binary sequences. Biometrics 41, 91 101.
    • (1985) Biometrics , vol.41 , pp. 91-101
    • Muenz, L.R.1    Rubinstein, L.V.2
  • 23
    • 0036012997 scopus 로고    scopus 로고
    • Publication bias and meta-analysis for 2 × 2 tables: An average Markov chain Monte Carlo EM algorithm
    • Shi, J. Q. and Copas, J. (2002). Publication bias and meta-analysis for 2 × 2 tables: An average Markov chain Monte Carlo EM algorithm. Journal of the Royal Statistical Society, Series B 64, 221 236.
    • (2002) Journal of the Royal Statistical Society, Series B , vol.64 , pp. 221-236
    • Shi, J.Q.1    Copas, J.2
  • 24
    • 84950432017 scopus 로고
    • A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms
    • Wei, G. C. and Tanner, M. A. (1990). A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms. Journal of The American Statistical Association 85, 699 704.
    • (1990) Journal of the American Statistical Association , vol.85 , pp. 699-704
    • Wei, G.C.1    Tanner, M.A.2
  • 25
    • 0036188841 scopus 로고    scopus 로고
    • On estimation and prediction for spatial generalized linear mixed models
    • Zhang, H. (2002). On estimation and prediction for spatial generalized linear mixed models. Biometrics 58, 129 136.
    • (2002) Biometrics , vol.58 , pp. 129-136
    • Zhang, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.