메뉴 건너뛰기




Volumn 12, Issue , 2007, Pages 1072-1100

Large deviations and isoperimetry over convex probability measures with heavy tails

Author keywords

Convex measures; Dilation of sets; Isoperimetric; Khinchin type; Large deviations; Sobolev type inequalities; Transportation of mass; Weak Poincar

Indexed keywords


EID: 34548297030     PISSN: None     EISSN: 10836489     Source Type: Journal    
DOI: 10.1214/EJP.v12-440     Document Type: Article
Times cited : (49)

References (27)
  • 1
    • 34250424671 scopus 로고
    • Convex measures on locally convex spaces
    • Borell, C. Convex measures on locally convex spaces. Ark. Math., 12 (1974), 239-252.
    • (1974) Ark. Math. , vol.12 , pp. 239-252
    • Borell, C.1
  • 2
    • 0000130180 scopus 로고
    • Convex set functions in d-space
    • Borell, C. Convex set functions in d-space. Period. Math. Hungar., 6 (1975), No. 2, 111-136.
    • (1975) Period. Math. Hungar. , vol.6 , Issue.2 , pp. 111-136
    • Borell, C.1
  • 3
    • 0001332868 scopus 로고    scopus 로고
    • Uniform positivity improving property, Sobolev inequalities, and spectral gaps
    • Aida, S. Uniform positivity improving property, Sobolev inequalities, and spectral gaps. J. Fund. Anal., 158 (1998), No. 1, 152-185.
    • (1998) J. Fund. Anal. , vol.158 , Issue.1 , pp. 152-185
    • Aida, S.1
  • 4
    • 0036014152 scopus 로고    scopus 로고
    • Log-concave and spherical models in isoperimetry
    • Barthe, F. Log-concave and spherical models in isoperimetry. Geom. Funct. Anal., 12 (2002), No. 1, 32-55.
    • (2002) Geom. Funct. Anal. , vol.12 , Issue.1 , pp. 32-55
    • Barthe, F.1
  • 5
    • 33846169811 scopus 로고    scopus 로고
    • Concentration for independent random variables with heavy tails
    • Barthe, F., Cattiaux, P., Roberto, C. Concentration for independent random variables with heavy tails. AMRX Appl. Math. Res. Express, 2005, No. 2, 39-60.
    • (2005) AMRX Appl. Math. Res. Express , vol.2 , pp. 39-60
    • Barthe, F.1    Cattiaux, P.2    Roberto, C.3
  • 6
    • 0000140877 scopus 로고    scopus 로고
    • Coercive inequalities for Gibbs measures
    • Bertini, L., Zegarlinski, B. Coercive inequalities for Gibbs measures. J. Funct. Anal., 162 (1999), No. 2, 257-286.
    • (1999) J. Funct. Anal. , vol.162 , Issue.2 , pp. 257-286
    • Bertini, L.1    Zegarlinski, B.2
  • 7
    • 0030514140 scopus 로고    scopus 로고
    • Extremal properties of half-spaces for log-concave distributions
    • Bobkov, S. G. Extremal properties of half-spaces for log-concave distributions. Ann. Probab., 24 (1996), No. 1, 35-48.
    • (1996) Ann. Probab. , vol.24 , Issue.1 , pp. 35-48
    • Bobkov, S.G.1
  • 8
    • 0033233673 scopus 로고    scopus 로고
    • Isoperimetric and analytic inequalities for log-concave probability measures
    • Bobkov, S. G. Isoperimetric and analytic inequalities for log-concave probability measures. Ann. Probab., 27 (1999), No. 4, 1903-1921.
    • (1999) Ann. Probab. , vol.27 , Issue.4 , pp. 1903-1921
    • Bobkov, S.G.1
  • 9
    • 22544464501 scopus 로고    scopus 로고
    • Large deviations via transference plans
    • Nova Sci. Publ., Hauppauge, NY
    • Bobkov, S. G. Large deviations via transference plans. Adv. Math. Res., Vol. 2, 151-175, Nova Sci. Publ., Hauppauge, NY, 2003.
    • (2003) Adv. Math. Res. , vol.2 , pp. 151-175
    • Bobkov, S.G.1
  • 10
    • 0031511187 scopus 로고    scopus 로고
    • Isoperimetric constants for product probability measures
    • Bobkov, S. G., Houdre, C. Isoperimetric constants for product probability measures. Ann. Probab., 25 (1997), No. 1, 184-205.
    • (1997) Ann. Probab. , vol.25 , Issue.1 , pp. 184-205
    • Bobkov, S.G.1    Houdre, C.2
  • 11
    • 0000663941 scopus 로고
    • On the distribution of polynomials on high dimensional convex sets. Israel Seminar (GAFA) 1989-90
    • Bourgain, J. On the distribution of polynomials on high dimensional convex sets. Israel Seminar (GAFA) 1989-90, Lecture Notes in Math., 1469 (1991), 127-137.
    • (1991) Lecture Notes in Math. , vol.1469 , pp. 127-137
    • Bourgain, J.1
  • 12
    • 49549132663 scopus 로고
    • On extensions of the Brunn-Minkowski and Prekopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation
    • Brascamp, H. J., Lieb, E. H. On extensions of the Brunn-Minkowski and Prekopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal., 22 (1976), No. 4, 366-389.
    • (1976) J. Funct. Anal. , vol.22 , Issue.4 , pp. 366-389
    • Brascamp, H.J.1    Lieb, E.H.2
  • 13
    • 0003672936 scopus 로고
    • Computing the volume of convex bodies: A case where randomness probably helps
    • Probabilistic Combinatorics and Its Applications (ed. B. Bolobas)
    • Dyer, M., Frieze, A. Computing the volume of convex bodies: a case where randomness probably helps. In: Probabilistic Combinatorics and Its Applications (ed. B. Bolobas), Proc. Of Simposia in Appl. Math., vol. 44 (1992), 123-170.
    • (1992) Proc. Of Simposia in Appl. Math. , vol.44 , pp. 123-170
    • Dyer, M.1    Frieze, A.2
  • 14
    • 0000853833 scopus 로고
    • Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces
    • Gromov, M., Milman, V.D. Generalization of the spherical isoperimetric inequality to uniformly convex Banach spaces. Compositio Math., 62 (1987), 263-282.
    • (1987) Compositio Math. , vol.62 , pp. 263-282
    • Gromov, M.1    Milman, V.D.2
  • 15
    • 0039530543 scopus 로고    scopus 로고
    • Kahane-Khinchine type inequalities for negative exponents
    • Guedon, O. Kahane-Khinchine type inequalities for negative exponents. Mathematika, 46 (1999), 165-173.
    • (1999) Mathematika , vol.46 , pp. 165-173
    • Guedon, O.1
  • 16
    • 51249166102 scopus 로고
    • Isoperimetric problems for convex bodies and a localization lemma
    • Kannan, R., Lovasz, L., Simonovits, M. Isoperimetric problems for convex bodies and a localization lemma. Discrete and Comput. Geom., 13 (1995), 541-559.
    • (1995) Discrete and Comput. Geom. , vol.13 , pp. 541-559
    • Kannan, R.1    Lovasz, L.2    Simonovits, M.3
  • 17
    • 0001785712 scopus 로고
    • Contributions to the theory of convex bodies
    • Knothe, H. Contributions to the theory of convex bodies. Michigan Math. J., 4 (1957), 39-52.
    • (1957) Michigan Math. J. , vol.4 , pp. 39-52
    • Knothe, H.1
  • 18
    • 0003386382 scopus 로고    scopus 로고
    • On the equivalence between geometric and arithmetic means for log-concave measures
    • (Berkeley, CA, Math. Sci. Res. Inst. Publ., 34, Cambridge Univ. Press, Cambridge, 1999
    • Latala, R. On the equivalence between geometric and arithmetic means for log-concave measures. Convex geometric analysis (Berkeley, CA, 1996), 123-127, Math. Sci. Res. Inst. Publ., 34, Cambridge Univ. Press, Cambridge, 1999.
    • (1996) Convex Geometric Analysis , pp. 123-127
    • Latala, R.1
  • 19
    • 0000639280 scopus 로고
    • Isoperimetry and Gaussian analysis. Lectures on Probab
    • (Saint-Flour,, Lecture Notes in Math., 1648, Springer, Berlin, 1996
    • Ledoux, M. Isoperimetry and Gaussian analysis. Lectures on Probab. Theory and Statistics (Saint-Flour, 1994), 165-294; Lecture Notes in Math., 1648, Springer, Berlin, 1996.
    • (1994) Theory and Statistics , pp. 165-294
    • Ledoux, M.1
  • 20
    • 33847262664 scopus 로고    scopus 로고
    • Spectral gap, logarithmic Sobolev constant, and geometric bounds
    • Int. Press, Somerville, MA, 2004
    • Ledoux, M. Spectral gap, logarithmic Sobolev constant, and geometric bounds. Surveys in Diff. Geom., Vol. IX, 219-240, Int. Press, Somerville, MA, 2004.
    • Surveys in Diff. Geom. , vol.IX , pp. 219-240
    • Ledoux, M.1
  • 21
    • 0001464498 scopus 로고
    • L2 rates of convergence for attractive reversible nearest particle systems: The critical case
    • Liggett, T. M. L2 rates of convergence for attractive reversible nearest particle systems: the critical case. Ann. Probab., 19 (1991), No.3, 935-959.
    • (1991) Ann. Probab. , vol.19 , Issue.3 , pp. 935-959
    • Liggett, T.M.1
  • 23
    • 84990634606 scopus 로고
    • Random walks in a convex body and an improved volume algorithm
    • Lovasz, L., Simonovits, M. Random walks in a convex body and an improved volume algorithm. Random Structures and Algorithms, 4 (1993), No. 3, 359-412.
    • (1993) Random Structures and Algorithms , vol.4 , Issue.3 , pp. 359-412
    • Lovasz, L.1    Simonovits, M.2
  • 24
    • 0002893831 scopus 로고    scopus 로고
    • Quand l'inegalite log-Sobolev implique l'inegalite de trou spectral. (French) [When the log-Sobolev inequality implies the spectral gap inequality]
    • Lecture Notes in Math., 1686, Springer, Berlin, 1998
    • Mathieu, P. Quand l'inegalite log-Sobolev implique l'inegalite de trou spectral. (French) [When the log-Sobolev inequality implies the spectral gap inequality]. Seminaire de Proba-bilites, XXXII, 30-35; Lecture Notes in Math., 1686, Springer, Berlin, 1998.
    • Seminaire De Proba-Bilites , vol.XXXII , pp. 30-35
    • Mathieu, P.1
  • 25
    • 0013002795 scopus 로고    scopus 로고
    • The geometric KLS lemma, dimension-free estimates for the distribution of values of polynomials, and distribution of zeroes of random analytic functions
    • (Russian); translation in St. Petersburg Math. J., 14 (2003), No. 2, 351-366
    • Nazarov, F., Sodin, M., Volberg, A. The geometric KLS lemma, dimension-free estimates for the distribution of values of polynomials, and distribution of zeroes of random analytic functions. Algebra i Analiz, 14 (2002), No. 2, 214-234 (Russian); translation in St. Petersburg Math. J., 14 (2003), No. 2, 351-366.
    • (2002) Algebra I Analiz , vol.14 , Issue.2 , pp. 214-234
    • Nazarov, F.1    Sodin, M.2    Volberg, A.3
  • 27
    • 0035485240 scopus 로고    scopus 로고
    • Weak Poincare inequalities and L2-convergence rates of Markov semigroups
    • Rockner, M., Wang, F.-Y. Weak Poincare inequalities and L2-convergence rates of Markov semigroups. J. Funct. Anal., 185 (2001), No. 2, 564-603.
    • (2001) J. Funct. Anal. , vol.185 , Issue.2 , pp. 564-603
    • Rockner, M.1    Wang, F.-Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.