-
1
-
-
0036792139
-
An indirect genetic algorithm for set covering problems
-
Aickelin, U. (2002). An indirect genetic algorithm for set covering problems. Journal of the Operational Research Society, 53, 1118-1126.
-
(2002)
Journal of the Operational Research Society
, vol.53
, pp. 1118-1126
-
-
Aickelin, U.1
-
2
-
-
0000684545
-
Exploiting problem structure in a genetic algorithm approach to a nurse rostering problem
-
Aickelin, U., & Dowsland, K. (2000). Exploiting problem structure in a genetic algorithm approach to a nurse rostering problem. Journal of Scheduling, 3, 139-153.
-
(2000)
Journal of Scheduling
, vol.3
, pp. 139-153
-
-
Aickelin, U.1
Dowsland, K.2
-
3
-
-
0036723174
-
Enhanced direct and indirect genetic algorithm approaches for a mall layout and tenant selection problem
-
Aickelin, U., & Dowsland, K. (2002). Enhanced direct and indirect genetic algorithm approaches for a mall layout and tenant selection problem. Journal of Heuristics, 8, 503-514.
-
(2002)
Journal of Heuristics
, vol.8
, pp. 503-514
-
-
Aickelin, U.1
Dowsland, K.2
-
4
-
-
0942291224
-
An indirect genetic algorithm for a nurse scheduling problem
-
Aickelin, U., & Dowsland, K. (2004). An indirect genetic algorithm for a nurse scheduling problem. Computers and Operations Research 31, 761-778.
-
(2004)
Computers and Operations Research
, vol.31
, pp. 761-778
-
-
Aickelin, U.1
Dowsland, K.2
-
5
-
-
4043060936
-
Building better nurse scheduling algorithms
-
Aickelin, U., & White, P. (2004). Building better nurse scheduling algorithms. Annals of Operations Research, 128, 159-177.
-
(2004)
Annals of Operations Research
, vol.128
, pp. 159-177
-
-
Aickelin, U.1
White, P.2
-
6
-
-
0142062994
-
A greedy-based neighborhood search approach to a nurse rostering problem
-
Bellanti, F., Carello, G., Della Croce, F., & Tadei, R. (2004). A greedy-based neighborhood search approach to a nurse rostering problem. European Journal of Operational Research, 153, 28-40.
-
(2004)
European Journal of Operational Research
, vol.153
, pp. 28-40
-
-
Bellanti, F.1
Carello, G.2
Della Croce, F.3
Tadei, R.4
-
7
-
-
84956861632
-
A hybrid tabu search algorithm for the nurse rostering problem
-
B. McKay et al, Eds, Berlin: Springer
-
Burke, E. K., De Causmaecker, P., & Vanden Berghe, G. (1999). A hybrid tabu search algorithm for the nurse rostering problem. In B. McKay et al. (Eds.), Lecture Notes in Artificial Intelligence: Vol. 1585. Simulated evolution and learning (pp. 187-194). Berlin: Springer.
-
(1999)
Lecture Notes in Artificial Intelligence: Vol. 1585. Simulated evolution and learning
, pp. 187-194
-
-
Burke, E.K.1
De Causmaecker, P.2
Vanden Berghe, G.3
-
8
-
-
0035501393
-
A memetic approach to the nurse rostering problem
-
Burke, E. K., Cowling, P., De Causmaecker, P., & Vanden Berghe, G. (2001). A memetic approach to the nurse rostering problem. Applied Intelligence, 15, 199-214.
-
(2001)
Applied Intelligence
, vol.15
, pp. 199-214
-
-
Burke, E.K.1
Cowling, P.2
De Causmaecker, P.3
Vanden Berghe, G.4
-
9
-
-
7544246336
-
The state of the art of nurse rostering
-
Burke, E. K., De Causmaecker, P., Vanden Berghe, G., & Van Landeghem, H. (2004). The state of the art of nurse rostering. Journal of Scheduling, 7, 441-499.
-
(2004)
Journal of Scheduling
, vol.7
, pp. 441-499
-
-
Burke, E.K.1
De Causmaecker, P.2
Vanden Berghe, G.3
Van Landeghem, H.4
-
10
-
-
0042736688
-
Nurse rostering problems - a bibliographic survey
-
Cheang, B., Li, H., Lim, A., & Rodrigues, B. (2003). Nurse rostering problems - a bibliographic survey. European Journal of Operational Research, 151, 447-460.
-
(2003)
European Journal of Operational Research
, vol.151
, pp. 447-460
-
-
Cheang, B.1
Li, H.2
Lim, A.3
Rodrigues, B.4
-
11
-
-
78049265488
-
MIMC: Finding optima by estimating probability densities
-
M. C. Mozer et al, Eds, Cambridge: MIT Press
-
De Bonet, J. S., Isbell, C. L., & Viola, P. (1997). MIMC: finding optima by estimating probability densities. In M. C. Mozer et al. (Eds.), Advances in neural information processing systems (pp. 424). Cambridge: MIT Press.
-
(1997)
Advances in neural information processing systems
, pp. 424
-
-
De Bonet, J.S.1
Isbell, C.L.2
Viola, P.3
-
12
-
-
0034228813
-
Solving a nurse scheduling with knapsacks, networks and tabu search
-
Dowsland, K. A., & Thompson, J. M. (2000). Solving a nurse scheduling with knapsacks, networks and tabu search. Journal of Operational Research Society, 51, 825-833.
-
(2000)
Journal of Operational Research Society
, vol.51
, pp. 825-833
-
-
Dowsland, K.A.1
Thompson, J.M.2
-
15
-
-
0002370418
-
A tutorial on learning with Bayesian networks
-
M. Jordan Ed, Cambridge: MIT Press
-
Heckerman, D. (1998). A tutorial on learning with Bayesian networks. In M. Jordan (Ed.), Learning in graphical models. Cambridge: MIT Press.
-
(1998)
Learning in graphical models
-
-
Heckerman, D.1
-
17
-
-
0026285038
-
A heuristic approach to nurse scheduling in hospital units with non-stationary, urgent demand, and a fixed staff size
-
Isken, M. W., & Hancock, W. (1991). A heuristic approach to nurse scheduling in hospital units with non-stationary, urgent demand, and a fixed staff size. Journal ofthe Society for Health Systems, 2, 24-41.
-
(1991)
Journal ofthe Society for Health Systems
, vol.2
, pp. 24-41
-
-
Isken, M.W.1
Hancock, W.2
-
18
-
-
0033671533
-
Evolutionary algorithms for nurse scheduling problems
-
San Diego pp
-
Jan, A., Yamamoto, M., & Ohuchi, A. (2000). Evolutionary algorithms for nurse scheduling problems. In Proceedings of the 2000 congress on evolutionary computation, San Diego (pp. 196-203).
-
(2000)
Proceedings of the 2000 congress on evolutionary computation
, pp. 196-203
-
-
Jan, A.1
Yamamoto, M.2
Ohuchi, A.3
-
19
-
-
0013417693
-
A metaheuristic approach to multiple objective nurse scheduling
-
Jaszkiewicz, A. (1997). A metaheuristic approach to multiple objective nurse scheduling. Foundations of Computing and Decision Sciences, 22, 169-184.
-
(1997)
Foundations of Computing and Decision Sciences
, vol.22
, pp. 169-184
-
-
Jaszkiewicz, A.1
-
20
-
-
0004283231
-
-
Jordan, M. I, Ed, Cambridge: MIT Press
-
Jordan, M. I. (Ed.) (1999). Learning in graphical models. Cambridge: MIT Press.
-
(1999)
Learning in graphical models
-
-
-
22
-
-
84898059801
-
FDA - a scalable evolutionary algorithm for the optimization of additively decomposed functions
-
Mühlenbein, H., & Mahnig, T. (1999). FDA - a scalable evolutionary algorithm for the optimization of additively decomposed functions. Evolutionary Computation, 7, 45-68.
-
(1999)
Evolutionary Computation
, vol.7
, pp. 45-68
-
-
Mühlenbein, H.1
Mahnig, T.2
-
24
-
-
4243965486
-
-
Research on the Bayesian optimization algorithms, No 200010, University of Illinois
-
Pelikan, M., & Goldberg, D. (2000). Research on the Bayesian optimization algorithms (IlliGAL report No 200010). University of Illinois.
-
(2000)
IlliGAL report
-
-
Pelikan, M.1
Goldberg, D.2
-
25
-
-
0003580454
-
BOA: The Bayesian optimization algorithm
-
No 99003, University of Illinois
-
Pelikan, M., Goldberg, D., & Cantu-Paz, E. (1999). BOA: the Bayesian optimization algorithm (IlliGAL report No 99003). University of Illinois.
-
(1999)
IlliGAL report
-
-
Pelikan, M.1
Goldberg, D.2
Cantu-Paz, E.3
|