-
6
-
-
0022754972
-
-
Christenson, C. P.; Harthcock, M. A.; Meadows, M. D.; Spell, H. L.; Howard, W. L.; Creswick, M. W.; Guerra, R. E.; Turner, R. B. J Polym Sci Polym Phys Ed 1986, 24, 1401.
-
(1986)
J Polym Sci Polym Phys Ed
, vol.24
, pp. 1401
-
-
Christenson, C.P.1
Harthcock, M.A.2
Meadows, M.D.3
Spell, H.L.4
Howard, W.L.5
Creswick, M.W.6
Guerra, R.E.7
Turner, R.B.8
-
8
-
-
0347338065
-
-
Sonneschein, M. F.; Rondan, N.; Wendt, B.; Cox, J. M. J Polym Sci Part A: Polym Chem 2004, 42, 271.
-
(2004)
J Polym Sci Part A: Polym Chem
, vol.42
, pp. 271
-
-
Sonneschein, M.F.1
Rondan, N.2
Wendt, B.3
Cox, J.M.4
-
9
-
-
26844522812
-
-
Sonnenschein, M. F.; Lysenko, Z.; Brune, D. A.; Wendt, B. L.; Schrock, A. K. Polymer 2005, 46, 10158.
-
(2005)
Polymer
, vol.46
, pp. 10158
-
-
Sonnenschein, M.F.1
Lysenko, Z.2
Brune, D.A.3
Wendt, B.L.4
Schrock, A.K.5
-
10
-
-
0020273330
-
-
Kresta, J. E, Ed, Plenum: New York
-
Turner, R. B.; Spell, H. L.; Vanderhider, J. A. In Reaction Injection Molding and Fast Polymerization Reactions; Kresta, J. E., Ed.; Plenum: New York, 1982; p 63.
-
(1982)
Reaction Injection Molding and Fast Polymerization Reactions
, pp. 63
-
-
Turner, R.B.1
Spell, H.L.2
Vanderhider, J.A.3
-
11
-
-
0020290328
-
-
Kresta, J. E, Ed, Plenum: New York
-
Zdrahala, R. J.; Critchfield, F. E. In Reaction Injection Molding and Fast Polymerization Reactions; Kresta, J. E., Ed.; Plenum: New York, 1982; p 55.
-
(1982)
Reaction Injection Molding and Fast Polymerization Reactions
, pp. 55
-
-
Zdrahala, R.J.1
Critchfield, F.E.2
-
12
-
-
0026155704
-
-
Ryan, A. J.; Willkomm, W. R.; Bergstrom, T. B.; Macosko, C. W.; Koberstein, J. T.; Yu, C. C.; Russell, T. P. Macromolecules 1991, 24, 2883.
-
(1991)
Macromolecules
, vol.24
, pp. 2883
-
-
Ryan, A.J.1
Willkomm, W.R.2
Bergstrom, T.B.3
Macosko, C.W.4
Koberstein, J.T.5
Yu, C.C.6
Russell, T.P.7
-
13
-
-
0025415074
-
-
Ryan, A. J. Polymer 1990, 31, 707.
-
Ryan, A. J. Polymer 1990, 31, 707.
-
-
-
-
14
-
-
0024916818
-
-
Birch, A. J.; Stanford, J. L.; Ryan, A. J. Polym Bull 1989, 22, 629.
-
Birch, A. J.; Stanford, J. L.; Ryan, A. J. Polym Bull 1989, 22, 629.
-
-
-
-
15
-
-
0042637102
-
-
Ryan, A. J.; Stanford, J. L.; Still, R. H. Plast Rubber Compos Process Appl 1990, 13, 99.
-
(1990)
Plast Rubber Compos Process Appl
, vol.13
, pp. 99
-
-
Ryan, A.J.1
Stanford, J.L.2
Still, R.H.3
-
16
-
-
0026112762
-
-
Ryan, A. J.; Bergstrom, T. B.; Willkomm, W. R.; Macosko, C. W. J Appl Polym Sci 1991, 42, 1023.
-
(1991)
J Appl Polym Sci
, vol.42
, pp. 1023
-
-
Ryan, A.J.1
Bergstrom, T.B.2
Willkomm, W.R.3
Macosko, C.W.4
-
17
-
-
0030290798
-
-
Nakamae, K.; Nishino, T.; Asaoka, S.; Sudaryanto, S. Int J Adhes Adhes 1996, 16, 233.
-
(1996)
Int J Adhes Adhes
, vol.16
, pp. 233
-
-
Nakamae, K.1
Nishino, T.2
Asaoka, S.3
Sudaryanto, S.4
-
18
-
-
0031547674
-
-
Rosthauser, J. W.; Haider, K. W.; Steinlein, C.; Eisenbach, C. D. J Appl Polym Sci 1997, 64, 957.
-
(1997)
J Appl Polym Sci
, vol.64
, pp. 957
-
-
Rosthauser, J.W.1
Haider, K.W.2
Steinlein, C.3
Eisenbach, C.D.4
-
19
-
-
0042467290
-
-
September 17-20
-
Gier, D. R.; O'Neill, R. E.; Adams, M. R.; Priester, R. D., Jr.; Lidy, W. A.; Barnes, C. G.; Rightor, E. G.; Davis, B. L. In Proceedings of Polyurethanes Expo'98, September 17-20, 1998; p 227.
-
(1998)
Proceedings of Polyurethanes Expo'98
, pp. 227
-
-
Gier, D.R.1
O'Neill, R.E.2
Adams, M.R.3
Priester Jr., R.D.4
Lidy, W.A.5
Barnes, C.G.6
Rightor, E.G.7
Davis, B.L.8
-
20
-
-
0342699787
-
-
Sanchez-Adsuar, M. S.; Papon, E.; Villenave, J.-J. Polym Int 2000, 49, 591.
-
Sanchez-Adsuar, M. S.; Papon, E.; Villenave, J.-J. Polym Int 2000, 49, 591.
-
-
-
-
21
-
-
0034702708
-
-
Garrett, J. T.; Runt, J.; Lin, J. S. Macromolecules 2000, 33, 6353.
-
(2000)
Macromolecules
, vol.33
, pp. 6353
-
-
Garrett, J.T.1
Runt, J.2
Lin, J.S.3
-
22
-
-
0035949895
-
-
Garrett, J. T.; Runt, J.; Siedlecki, C. A. Macromolecules 2001, 34, 7066.
-
(2001)
Macromolecules
, vol.34
, pp. 7066
-
-
Garrett, J.T.1
Runt, J.2
Siedlecki, C.A.3
-
23
-
-
0032143785
-
-
Kim, H. D.; Huh, J. H.; Kim, E. W.; Park, C. C. J Appl Polym Sci 1998, 69, 1349.
-
(1998)
J Appl Polym Sci
, vol.69
, pp. 1349
-
-
Kim, H.D.1
Huh, J.H.2
Kim, E.W.3
Park, C.C.4
-
24
-
-
0032672187
-
-
Kim, H. D.; Lee, T. J.; Huh, J. H.; Lee, D. J. J Appl Polym Sci 1999, 73, 345.
-
(1999)
J Appl Polym Sci
, vol.73
, pp. 345
-
-
Kim, H.D.1
Lee, T.J.2
Huh, J.H.3
Lee, D.J.4
-
25
-
-
0037061566
-
-
O'Sickey, M. J.; Lawrey, B. D.; Wilkes, G. L. J Appl Polym Sci 2002, 84, 229.
-
(2002)
J Appl Polym Sci
, vol.84
, pp. 229
-
-
O'Sickey, M.J.1
Lawrey, B.D.2
Wilkes, G.L.3
-
26
-
-
0038667798
-
-
Yang, J. H.; Chun, B. C.; Chung, Y.-C.; Cho, J. H. Polymer 2003, 44, 3251.
-
(2003)
Polymer
, vol.44
, pp. 3251
-
-
Yang, J.H.1
Chun, B.C.2
Chung, Y.-C.3
Cho, J.H.4
-
27
-
-
4444305185
-
-
Sheth, J. P.; Klinedinst, D. B.; Pechar, T. W.; Wilkes, G. L.; Yilgor, E.; Yilgor, I. Polymer 2004, 45, 6919.
-
(2004)
Polymer
, vol.45
, pp. 6919
-
-
Sheth, J.P.1
Klinedinst, D.B.2
Pechar, T.W.3
Wilkes, G.L.4
Yilgor, E.5
Yilgor, I.6
-
28
-
-
27844473349
-
-
Christenson, E. M.; Anderson, J. M.; Hiltner, A.; Baer, E. Polymer 2005, 46, 11744.
-
(2005)
Polymer
, vol.46
, pp. 11744
-
-
Christenson, E.M.1
Anderson, J.M.2
Hiltner, A.3
Baer, E.4
-
38
-
-
34548292285
-
-
Estimates of cohesive energy density and solubility parameters were performed using program SYNTHIA within Cerius2 package provided by Accelrys, Inc. The program uses the group contribution techniques developed by van Krevelen (ref. 39) and Bicerano ref. 40
-
Estimates of cohesive energy density and solubility parameters were performed using program SYNTHIA within Cerius2 package provided by Accelrys, Inc. The program uses the group contribution techniques developed by van Krevelen (ref. 39) and Bicerano (ref. 40).
-
-
-
-
41
-
-
34548246825
-
-
Bicerano, J.; Daussin, R. D.; Elwell, M. J. A.; van der Wal, H. R.; Berthevas, P.; Brown, M.; Casati, F.; Farrisey, W.; Fosnaugh, J.; de Genova, R.; Herrington, R.; Hicks, J.; Hinze, K.; Hock, K.; Hunter, D.; Jeng, L.; Laycock, D.; Lidy, W.; Mispreuve, H.; Moore, R.; Nafziger, L.; Norton, M.; Parish, D.; Priester, R.; Skaggs, K.; Stahler, L.; Sweet, F.; Thomas, R.; Turner, R.; Wiltz, G.; Woods, T.; Christenson, C. P.; Schrock, A. K. In Polymeric Foams: Mechanisms and Materials; CRC Press: Boca Raton, 2003; p 173.
-
Bicerano, J.; Daussin, R. D.; Elwell, M. J. A.; van der Wal, H. R.; Berthevas, P.; Brown, M.; Casati, F.; Farrisey, W.; Fosnaugh, J.; de Genova, R.; Herrington, R.; Hicks, J.; Hinze, K.; Hock, K.; Hunter, D.; Jeng, L.; Laycock, D.; Lidy, W.; Mispreuve, H.; Moore, R.; Nafziger, L.; Norton, M.; Parish, D.; Priester, R.; Skaggs, K.; Stahler, L.; Sweet, F.; Thomas, R.; Turner, R.; Wiltz, G.; Woods, T.; Christenson, C. P.; Schrock, A. K. In Polymeric Foams: Mechanisms and Materials; CRC Press: Boca Raton, 2003; p 173.
-
-
-
-
42
-
-
33748752743
-
-
CRC Press: Boca Raton
-
Gruenbauer, H. J. M.; Bicerano, J.; Clavel, P.; Daussin, R. D.; de Vos, H. A.; Elwell, M. J. A.; Kawabata, H.; Kramer, H.; Latham, D. D.; Martin, C. A.; Moore, S. E.; Obi, B. C.; Parenti, V.; Schrock, A. K.; van der Bosch, R. In Polymeric Foams: Mechanisms and Materials; CRC Press: Boca Raton, 2003; p 253.
-
(2003)
Polymeric Foams: Mechanisms and Materials
, pp. 253
-
-
Gruenbauer, H.J.M.1
Bicerano, J.2
Clavel, P.3
Daussin, R.D.4
de Vos, H.A.5
Elwell, M.J.A.6
Kawabata, H.7
Kramer, H.8
Latham, D.D.9
Martin, C.A.10
Moore, S.E.11
Obi, B.C.12
Parenti, V.13
Schrock, A.K.14
van der Bosch, R.15
-
43
-
-
16544364675
-
-
Huggins, M. J. J Chem Phys 1941, 9, 440.
-
Huggins, M. J. J Chem Phys 1941, 9, 440.
-
-
-
-
44
-
-
0010831342
-
-
Flory, P. J. J Chem Phys 1941, 9, 660.
-
Flory, P. J. J Chem Phys 1941, 9, 660.
-
-
-
-
46
-
-
28144431656
-
-
Jiang, Y.; Yan, X.; Liang, H.; Shi, A. C. J Phys Chem B 2005, 109, 21047.
-
(2005)
J Phys Chem B
, vol.109
, pp. 21047
-
-
Jiang, Y.1
Yan, X.2
Liang, H.3
Shi, A.C.4
-
47
-
-
0042043021
-
-
Kolařik, J. Eur Polym J 1998, 34, 585.
-
Kolařik, J. Eur Polym J 1998, 34, 585.
-
-
-
-
50
-
-
34548250281
-
-
Percolation exponent 5 typically ranges between 1.5 and 2 (see, e.g., ref. 51), depending on the type of the system and the property described by a percolation model (modulus, conductivity, etc.). There are instances, however, when percolation exponent could be larger than 2 (see, e.g., ref. 52). Various models (e.g., double percolation-see ref. 53) have been proposed to explain these high percolation exponents. In our analysis, we refrain from ascribing any specific meaning to exponent 5 = 2.5 and treat it simply as an adjustable parameter that best describes experimental data.
-
Percolation exponent 5 typically ranges between 1.5 and 2 (see, e.g., ref. 51), depending on the type of the system and the property described by a percolation model (modulus, conductivity, etc.). There are instances, however, when percolation exponent could be larger than 2 (see, e.g., ref. 52). Various models (e.g., double percolation-see ref. 53) have been proposed to explain these high percolation exponents. In our analysis, we refrain from ascribing any specific meaning to exponent 5 = 2.5 and treat it simply as an adjustable parameter that best describes experimental data.
-
-
-
-
52
-
-
11944250156
-
-
Fizazi, A.; Moulton, J.; Pakbaz, K.; Rughooputh, S.; Smith, P.; Heeger, A. J Phys Rev Lett 1990, 64, 2180.
-
(1990)
J Phys Rev Lett
, vol.64
, pp. 2180
-
-
Fizazi, A.1
Moulton, J.2
Pakbaz, K.3
Rughooputh, S.4
Smith, P.5
Heeger, A.6
-
53
-
-
0001451023
-
-
Levon, K.; Margolina, A.; Patashinsky, A. Z. Macromolecules 1993, 26, 4061.
-
(1993)
Macromolecules
, vol.26
, pp. 4061
-
-
Levon, K.1
Margolina, A.2
Patashinsky, A.Z.3
-
54
-
-
34548234771
-
-
It is important to note that eq 6 should be used only near the vicinity of the hard phase percolation. Indeed, the meaning of the percolation exponent öis to account for the fact that the percolated pathways are not linear but have some complicated morphology; thus, the efficiency of the reinforcement is much less than 100, However, at higher hard segment weight fractions, lamellar domains become thicker and longer, leading to more correlated structures. Ultimately, at very high hard segment weight fractions, the dependence of modulus on the hard segment weight fraction should become closer to linear and then saturate. We are not attempting to describe this region of the phase map in our current paper, concentrating mainly on the composition range more typical for polyurethane elastomers and flexible foams
-
It is important to note that eq 6 should be used only near the vicinity of the hard phase percolation. Indeed, the meaning of the percolation exponent öis to account for the fact that the percolated pathways are not linear but have some complicated morphology; thus, the efficiency of the reinforcement is much less than 100%. However, at higher hard segment weight fractions, lamellar domains become thicker and longer, leading to more correlated structures. Ultimately, at very high hard segment weight fractions, the dependence of modulus on the hard segment weight fraction should become closer to linear and then saturate. We are not attempting to describe this region of the phase map in our current paper, concentrating mainly on the composition range more typical for polyurethane elastomers and flexible foams.
-
-
-
-
59
-
-
34548259073
-
-
In principle, effective polyol functionality, fp, could itself depend on the composition if one accounts for the hydrogen bonding of the hard segments, not just the covalent bonding. We leave the investigation of this effect for future studies and keep /P a constant, independent of temperature and composition, and determined only by the number of terminal hydroxyl groups per polyol molecule
-
In principle, effective polyol functionality, fp, could itself depend on the composition if one accounts for the hydrogen bonding of the hard segments, not just the covalent bonding. We leave the investigation of this effect for future studies and keep /P a constant, independent of temperature and composition, and determined only by the number of terminal hydroxyl groups per polyol molecule.
-
-
-
-
61
-
-
0035942468
-
-
and references therein
-
Gusev, A. A. Macromolecules 2001, 34, 3081; and references therein.
-
(2001)
Macromolecules
, vol.34
, pp. 3081
-
-
Gusev, A.A.1
-
62
-
-
0036591009
-
-
Read, D. J.; Teixeira, P. I. C.; Duckett, R. A.; Sweeney, J.; McLeish, T. C. B. Eur Phys J E 2002, 8, 15.
-
(2002)
Eur Phys J E
, vol.8
, pp. 15
-
-
Read, D.J.1
Teixeira, P.I.C.2
Duckett, R.A.3
Sweeney, J.4
McLeish, T.C.B.5
-
64
-
-
0030574960
-
-
Elwell, M. J.; Ryan, A. J.; Grünbauer, H.; van Lieshout, H. C. Macromolecules 1996, 29, 2960.
-
(1996)
Macromolecules
, vol.29
, pp. 2960
-
-
Elwell, M.J.1
Ryan, A.J.2
Grünbauer, H.3
van Lieshout, H.C.4
-
65
-
-
0033743570
-
-
Teixeira, P. I. C.; Read, D. J.; McLeish, T. C. B. Macromolecules 2000, 33, 3871.
-
(2000)
Macromolecules
, vol.33
, pp. 3871
-
-
Teixeira, P.I.C.1
Read, D.J.2
McLeish, T.C.B.3
-
67
-
-
0001505466
-
-
Matsen, M. W.; Barrett, C. J. J Chem Phys 1998, 109, 4108.
-
Matsen, M. W.; Barrett, C. J. J Chem Phys 1998, 109, 4108.
-
-
-
|