메뉴 건너뛰기




Volumn 40, Issue 8, 2007, Pages 34-40

Search engines that learn from implicit feedback

Author keywords

Machine learning; Osmot engine; Pairwise preferences; Search

Indexed keywords


EID: 34548215752     PISSN: 00189162     EISSN: None     Source Type: Trade Journal    
DOI: 10.1109/MC.2007.289     Document Type: Article
Times cited : (148)

References (12)
  • 3
    • 34247882698 scopus 로고    scopus 로고
    • Evaluating the Accuracy of Implicit Feedback from Clicks and Query Reformulations in Web Search
    • article 7
    • T. Joachims et al., "Evaluating the Accuracy of Implicit Feedback from Clicks and Query Reformulations in Web Search," ACM Trans. Information Systems, vol. 25, no. 2, article 7, 2007.
    • (2007) ACM Trans. Information Systems , vol.25 , Issue.2
    • Joachims, T.1
  • 7
    • 8644249427 scopus 로고    scopus 로고
    • Implicit Feedback for Inferring User Preference: A Bibliography
    • D. Kelly and J. Teevan, "Implicit Feedback for Inferring User Preference: A Bibliography," ACM SIGIR Forum, vol. 37, no. 2, 2003, pp. 18-28.
    • (2003) ACM SIGIR Forum , vol.37 , Issue.2 , pp. 18-28
    • Kelly, D.1    Teevan, J.2
  • 12
    • 0008371352 scopus 로고    scopus 로고
    • Large-Margin Rank Boundaries for Ordinal Regression
    • P. Bartlett et al, eds, MIT Press
    • R. Herbrich, T. Graepel, and K. Obermayer, "Large-Margin Rank Boundaries for Ordinal Regression," P. Bartlett et al., eds., Advances in Large-Margin Classifiers, MIT Press, 2000, pp. 115-132.
    • (2000) Advances in Large-Margin Classifiers , pp. 115-132
    • Herbrich, R.1    Graepel, T.2    Obermayer, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.