메뉴 건너뛰기




Volumn 70, Issue 16-18, 2007, Pages 2783-2798

IG-based genetically optimized fuzzy polynomial neural networks with fuzzy set-based polynomial neurons

Author keywords

C means; Fuzzy polynomial neural networks (FPNN); Fuzzy set based polynomial neuron (FSPN); Genetic algorithms; Group method of data handling (GMDH); Information granules

Indexed keywords

CLUSTERING ALGORITHMS; FUZZY RULES; FUZZY SETS; GENETIC ALGORITHMS; LEAST SQUARES APPROXIMATIONS; MEMBERSHIP FUNCTIONS; MULTILAYER NEURAL NETWORKS; STRUCTURAL OPTIMIZATION;

EID: 34548215689     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2006.10.151     Document Type: Article
Times cited : (5)

References (33)
  • 1
    • 0030196823 scopus 로고    scopus 로고
    • Comparison of adaptive methods for function estimation from samples
    • Cherkassky V., Gehring D., and Mulier F. Comparison of adaptive methods for function estimation from samples. IEEE Trans. Neural Networks 7 (1996) 969-984
    • (1996) IEEE Trans. Neural Networks , vol.7 , pp. 969-984
    • Cherkassky, V.1    Gehring, D.2    Mulier, F.3
  • 2
    • 0346781553 scopus 로고    scopus 로고
    • Ten years of genetic fuzzy systems: current framework and new trends
    • Cordon O., et al. Ten years of genetic fuzzy systems: current framework and new trends. Fuzzy Sets Syst. 141 1 (2004) 5-31
    • (2004) Fuzzy Sets Syst. , vol.141 , Issue.1 , pp. 5-31
    • Cordon, O.1
  • 3
    • 34548265100 scopus 로고    scopus 로고
    • R.S. Crowder III, Predicting the Mackey-Glass time series with cascade-correlation learning, in: D. Touretzky, G. Hinton, T. Sejnowski (Eds.), Proceedings of the 1990 Connectionist Models Summer School, 1990, pp. 117-123.
  • 5
    • 0020602306 scopus 로고
    • Dynamic modeling and reaction invariant control of pH
    • Gustafsson T.K., and Waller K.V. Dynamic modeling and reaction invariant control of pH. Chem. Eng. Sci. 38 (1983) 389-398
    • (1983) Chem. Eng. Sci. , vol.38 , pp. 389-398
    • Gustafsson, T.K.1    Waller, K.V.2
  • 6
    • 0024914230 scopus 로고
    • Modeling and self-tuning control of a multivariable pH neutralization process
    • Hall R.C., and Seberg D.E. Modeling and self-tuning control of a multivariable pH neutralization process. Proc. ACC. (1989) 1822-1827
    • (1989) Proc. ACC. , pp. 1822-1827
    • Hall, R.C.1    Seberg, D.E.2
  • 8
    • 0006826682 scopus 로고
    • The review of problems solvable by algorithms of the group method of data handling (GMDH)
    • Ivakhnenko A.G., and Ivakhnenko G.A. The review of problems solvable by algorithms of the group method of data handling (GMDH). Pattern Recogn. Image Anal. 5 4 (1995) 527-535
    • (1995) Pattern Recogn. Image Anal. , vol.5 , Issue.4 , pp. 527-535
    • Ivakhnenko, A.G.1    Ivakhnenko, G.A.2
  • 11
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference system
    • Jang J.S.R. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybernet. 23 3 (1993) 665-685
    • (1993) IEEE Trans. Syst. Man Cybernet. , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 12
    • 0008089137 scopus 로고
    • Are genetic algorithms function optimizers?
    • Manner R., and Manderick B. (Eds), North-Holland, Amsterdam
    • Jong D.K.A. Are genetic algorithms function optimizers?. In: Manner R., and Manderick B. (Eds). Parallel Problem Solving from Nature 2 (1992), North-Holland, Amsterdam
    • (1992) Parallel Problem Solving from Nature 2
    • Jong, D.K.A.1
  • 13
    • 0027539712 scopus 로고
    • Fuzzy control of pH using genetic algorithms
    • Karr C.L., and Gentry E.J. Fuzzy control of pH using genetic algorithms. IEEE Trans. Fuzzy Syst. 1 (1993) 46-53
    • (1993) IEEE Trans. Fuzzy Syst. , vol.1 , pp. 46-53
    • Karr, C.L.1    Gentry, E.J.2
  • 14
    • 0030105463 scopus 로고    scopus 로고
    • A polynomial network modeling approach to a class of large-scale hydraulic systems
    • Kleinsteuber S., and Sepehri N. A polynomial network modeling approach to a class of large-scale hydraulic systems. Comput. Elect. Eng. 22 (1996) 151-168
    • (1996) Comput. Elect. Eng. , vol.22 , pp. 151-168
    • Kleinsteuber, S.1    Sepehri, N.2
  • 15
    • 34548245456 scopus 로고    scopus 로고
    • A.S. Lapedes, R. Farber, Non-linear signal processing using neural networks: prediction and system modeling, Technical Report LA-UR-87-2662, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, 1987.
  • 16
    • 0040949854 scopus 로고    scopus 로고
    • Automatic structure and parameter training methods for modeling of mechanical systems by recurrent neural networks
    • Li C.J., and Huang T.-Y. Automatic structure and parameter training methods for modeling of mechanical systems by recurrent neural networks. Appl. Math. Model. 23 (1999) 933-944
    • (1999) Appl. Math. Model. , vol.23 , pp. 933-944
    • Li, C.J.1    Huang, T.-Y.2
  • 17
    • 0032301756 scopus 로고    scopus 로고
    • Predicting a chaotic time series using a fuzzy neural network
    • Maguire L.P., Roche B., McGinnity T.M., and McDaid L.J. Predicting a chaotic time series using a fuzzy neural network. Inform. Sci. 112 (1998) 125-136
    • (1998) Inform. Sci. , vol.112 , pp. 125-136
    • Maguire, L.P.1    Roche, B.2    McGinnity, T.M.3    McDaid, L.J.4
  • 21
    • 0030085373 scopus 로고    scopus 로고
    • Modeling pH neutralization processes using fuzzy-neural approaches
    • Nie J., Loh A.P., and Hang C.C. Modeling pH neutralization processes using fuzzy-neural approaches. Fuzzy Sets Syst. 78 (1996) 5-22
    • (1996) Fuzzy Sets Syst. , vol.78 , pp. 5-22
    • Nie, J.1    Loh, A.P.2    Hang, C.C.3
  • 22
    • 0036529715 scopus 로고    scopus 로고
    • The design of self-organizing polynomial neural networks
    • Oh S.-K., and Pedrycz W. The design of self-organizing polynomial neural networks. Inform. Sci. 141 (2002) 237-258
    • (2002) Inform. Sci. , vol.141 , pp. 237-258
    • Oh, S.-K.1    Pedrycz, W.2
  • 23
    • 0742320761 scopus 로고    scopus 로고
    • Self-organizing polynomial neural networks based on PNs or FPNs: analysis and design
    • Oh S.K., and Pedrycz W. Self-organizing polynomial neural networks based on PNs or FPNs: analysis and design. Fuzzy Sets Syst. 142 2 (2003) 163-198
    • (2003) Fuzzy Sets Syst. , vol.142 , Issue.2 , pp. 163-198
    • Oh, S.K.1    Pedrycz, W.2
  • 24
    • 27744519316 scopus 로고    scopus 로고
    • Fuzzy polynomial neuron-based self-organizing neural networks
    • Oh S.K., and Pedrycz W. Fuzzy polynomial neuron-based self-organizing neural networks. Int. J. Gen. Syst. 32 (2003) 237-250
    • (2003) Int. J. Gen. Syst. , vol.32 , pp. 237-250
    • Oh, S.K.1    Pedrycz, W.2
  • 25
    • 9344244023 scopus 로고    scopus 로고
    • Self-organizing neural networks with fuzzy polynomial neurons
    • Oh S.K., Pedrycz W., and Ahn T.C. Self-organizing neural networks with fuzzy polynomial neurons. Appl. Soft Comput. 2 (2002) 1-10
    • (2002) Appl. Soft Comput. , vol.2 , pp. 1-10
    • Oh, S.K.1    Pedrycz, W.2    Ahn, T.C.3
  • 26
    • 0023295765 scopus 로고
    • Comparison of linear and nonlinear adaptive control of a pH-process
    • Pajunen G.A. Comparison of linear and nonlinear adaptive control of a pH-process. IEEE Control Syst. Mag. (1987) 39-44
    • (1987) IEEE Control Syst. Mag. , pp. 39-44
    • Pajunen, G.A.1
  • 27
    • 4544361988 scopus 로고    scopus 로고
    • Rule-based fuzzy polynomial neural networks in modeling software process data
    • Park B.J., Lee D.Y., and Oh S.K. Rule-based fuzzy polynomial neural networks in modeling software process data. Int. J. Control Automat. Syst. 1 3 (2003) 321-331
    • (2003) Int. J. Control Automat. Syst. , vol.1 , Issue.3 , pp. 321-331
    • Park, B.J.1    Lee, D.Y.2    Oh, S.K.3
  • 28
    • 0036565201 scopus 로고    scopus 로고
    • Subsethood-product fuzzy neural inference system (SuPFuNIS)
    • Paul S., and Kumar S. Subsethood-product fuzzy neural inference system (SuPFuNIS). IEEE Trans. Nerual Networks 13 3 (2002) 578-599
    • (2002) IEEE Trans. Nerual Networks , vol.13 , Issue.3 , pp. 578-599
    • Paul, S.1    Kumar, S.2
  • 30
    • 0029370886 scopus 로고
    • Neural networks and abductive networks for chemical sensor signals: a case comparison
    • Sommer V., Tobias P., Kohl D., Sundgren H., and Lundstrom L. Neural networks and abductive networks for chemical sensor signals: a case comparison. Sensors Actuators B 28 (1995) 217-222
    • (1995) Sensors Actuators B , vol.28 , pp. 217-222
    • Sommer, V.1    Tobias, P.2    Kohl, D.3    Sundgren, H.4    Lundstrom, L.5
  • 31
    • 30344473621 scopus 로고    scopus 로고
    • NFI: neuro-fuzzy inference method for transductive reasoning
    • Song Q., and Kasabov N.K. NFI: neuro-fuzzy inference method for transductive reasoning. IEEE Trans. Fuzzy Syst. 13 6 (2005) 799-808
    • (2005) IEEE Trans. Fuzzy Syst. , vol.13 , Issue.6 , pp. 799-808
    • Song, Q.1    Kasabov, N.K.2
  • 32
    • 0026943536 scopus 로고
    • Generating fuzzy rules from numerical data with applications
    • Wang L.X., and Mendel J.M. Generating fuzzy rules from numerical data with applications. IEEE Trans. Syst. Man Cybernet. 22 6 (1992) 1414-1427
    • (1992) IEEE Trans. Syst. Man Cybernet. , vol.22 , Issue.6 , pp. 1414-1427
    • Wang, L.X.1    Mendel, J.M.2
  • 33
    • 1642469977 scopus 로고    scopus 로고
    • Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic
    • Zadeh L.A. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets Syst. 90 (1997) 111-117
    • (1997) Fuzzy Sets Syst. , vol.90 , pp. 111-117
    • Zadeh, L.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.