-
1
-
-
6344247715
-
On a semismooth least squares formulation of complementarity problems with gap reduction
-
Kanzow, C. and Petra, S., 2004, On a semismooth least squares formulation of complementarity problems with gap reduction. Optimization Methods and Software, 19, 507-525.
-
(2004)
Optimization Methods and Software
, vol.19
, pp. 507-525
-
-
Kanzow, C.1
Petra, S.2
-
2
-
-
0003543822
-
-
PhD thesis, Computer Sciences Department, University of Wisconsin, Madison
-
Billups, S.C., 1995, Algorithms for complementarity problems and generalized equations. PhD thesis, Computer Sciences Department, University of Wisconsin, Madison.
-
(1995)
Algorithms for complementarity problems and generalized equations
-
-
Billups, S.C.1
-
3
-
-
29244465866
-
A penalized Fischer-Burmeister NCP-function
-
Chen, B., Chen, X. and Kanzow, C., 2000, A penalized Fischer-Burmeister NCP-function. Mathematical Programming, 88, 211-216.
-
(2000)
Mathematical Programming
, vol.88
, pp. 211-216
-
-
Chen, B.1
Chen, X.2
Kanzow, C.3
-
4
-
-
0043189808
-
A semismooth equation approach to the solution of nonlinear complementarity problems
-
De Luca, T., Facchinei, F. and Kanzow, C., 1996, A semismooth equation approach to the solution of nonlinear complementarity problems. Mathematical Programming, 75, 407-439.
-
(1996)
Mathematical Programming
, vol.75
, pp. 407-439
-
-
De Luca, T.1
Facchinei, F.2
Kanzow, C.3
-
5
-
-
0031542397
-
A new merit function for nonlinear complementarity problems and a related algorithm
-
Facchinei, F. and Soares, J., 1997, A new merit function for nonlinear complementarity problems and a related algorithm. SIAM Journal of Optimization, 7, 225-247.
-
(1997)
SIAM Journal of Optimization
, vol.7
, pp. 225-247
-
-
Facchinei, F.1
Soares, J.2
-
6
-
-
0000203179
-
Feasible descent algorithms for mixed complementarity problems
-
Ferris, M.C., Kanzow, C. and Munson, T.S., 1999, Feasible descent algorithms for mixed complementarity problems. Mathematical Programming, 86, 475-497.
-
(1999)
Mathematical Programming
, vol.86
, pp. 475-497
-
-
Ferris, M.C.1
Kanzow, C.2
Munson, T.S.3
-
7
-
-
0033365565
-
Global convergence analysis of the generalized Newton and Gauss-Newton methods of the Fischer-Burmeister equation for the complementarity problem
-
Jiang, H., 1999, Global convergence analysis of the generalized Newton and Gauss-Newton methods of the Fischer-Burmeister equation for the complementarity problem. Mathematics of Operations Research, 24, 529-543.
-
(1999)
Mathematics of Operations Research
, vol.24
, pp. 529-543
-
-
Jiang, H.1
-
8
-
-
0032331517
-
A trust region method for solving generalized complementarity problems
-
Jiang, H., Fukushima, M., Qi, L. and Sun, D., 1998, A trust region method for solving generalized complementarity problems. SIAM Journal of Optimization, 8, 140-157.
-
(1998)
SIAM Journal of Optimization
, vol.8
, pp. 140-157
-
-
Jiang, H.1
Fukushima, M.2
Qi, L.3
Sun, D.4
-
9
-
-
0035610337
-
Strictly feasible equation-based methods for mixed complementarity problems
-
Kanzow, C., 2001, Strictly feasible equation-based methods for mixed complementarity problems. Numerische Mathematik, 89, 135-160.
-
(2001)
Numerische Mathematik
, vol.89
, pp. 135-160
-
-
Kanzow, C.1
-
10
-
-
0004582487
-
On NCP-functions
-
Sun, D. and Qi, L., 1999, On NCP-functions. Computational Optimization and Applications, 13, 201-230.
-
(1999)
Computational Optimization and Applications
, vol.13
, pp. 201-230
-
-
Sun, D.1
Qi, L.2
-
11
-
-
0035643190
-
Nonmonotone trust-region methods for bound-constrained semismooth equations with applications to nonlinear mixed complementarity problems
-
Ulbrich, M., 2001, Nonmonotone trust-region methods for bound-constrained semismooth equations with applications to nonlinear mixed complementarity problems. SIAM Journal of Optimization, 11, 889-916.
-
(2001)
SIAM Journal of Optimization
, vol.11
, pp. 889-916
-
-
Ulbrich, M.1
-
14
-
-
0003859933
-
-
New York: John Wiley & Sons, reprinted by SIAM, Philadelphia, 1990
-
Clarke, F.H., 1983, Optimization and Nonsmooth Analysis (New York: John Wiley & Sons) (reprinted by SIAM, Philadelphia, 1990).
-
(1983)
Optimization and Nonsmooth Analysis
-
-
Clarke, F.H.1
-
15
-
-
0027543961
-
-
Qi1 L. and Sun, J., 1993, A nonsmooth version of Newton's method. Mathematical Programming, 58, 353-367.
-
Qi1 L. and Sun, J., 1993, A nonsmooth version of Newton's method. Mathematical Programming, 58, 353-367.
-
-
-
-
16
-
-
0000607524
-
Convergence analysis of some algorithms for solving nonsmooth equations
-
Qi, L., 1993, Convergence analysis of some algorithms for solving nonsmooth equations. Mathematics of Operations Research, 18, 227-244.
-
(1993)
Mathematics of Operations Research
, vol.18
, pp. 227-244
-
-
Qi, L.1
-
17
-
-
0003317924
-
Nonsmooth equations: Motivation and algorithms
-
Pang, J.-S. and Qi, L., 1993, Nonsmooth equations: motivation and algorithms. SIAM Journal of Optimization, 3, 443-465.
-
(1993)
SIAM Journal of Optimization
, vol.3
, pp. 443-465
-
-
Pang, J.-S.1
Qi, L.2
-
19
-
-
5044233366
-
Levenberg-Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints
-
Kanzow, C., Yamashita, N. and Fukushima, M., 2004, Levenberg-Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints. Journal of Computational and Applied Mathematics, 172, 375-397.
-
(2004)
Journal of Computational and Applied Mathematics
, vol.172
, pp. 375-397
-
-
Kanzow, C.1
Yamashita, N.2
Fukushima, M.3
-
20
-
-
0030303844
-
An interior trust region approach for nonlinear minimization, subject to bounds
-
Coleman, T.F. and Li, Y., 1996, An interior trust region approach for nonlinear minimization, subject to bounds. SIAM Journal of Optimization, 6, 418-445.
-
(1996)
SIAM Journal of Optimization
, vol.6
, pp. 418-445
-
-
Coleman, T.F.1
Li, Y.2
-
21
-
-
33749615719
-
On affine-scaling interior-point Newton methods for nonlinear minimization with bound constraints
-
Kanzow, C. and Klug, A., 2006, On affine-scaling interior-point Newton methods for nonlinear minimization with bound constraints. Computational Optimization and Applications, 35, 177-197.
-
(2006)
Computational Optimization and Applications
, vol.35
, pp. 177-197
-
-
Kanzow, C.1
Klug, A.2
-
22
-
-
0032651455
-
Global convergence of trust-region interior-point algorithms for infinite-dimensional nonconvex minimization subject to pointwise bounds
-
Ulbrich, M., Ulbrich, S. and Heinkenschloss, M., 1999, Global convergence of trust-region interior-point algorithms for infinite-dimensional nonconvex minimization subject to pointwise bounds. SIAM Journal on Control and Optimization, 37, 731-764.
-
(1999)
SIAM Journal on Control and Optimization
, vol.37
, pp. 731-764
-
-
Ulbrich, M.1
Ulbrich, S.2
Heinkenschloss, M.3
-
23
-
-
0013502380
-
Inexact trust-region methods for nonlinear complementarity problems
-
M. Fukushima and L. Qi Eds, Dordrecht, The Netherlands: Kluwer Academic Press, pp
-
Kanzow, C. and Zupke, M., 1999, Inexact trust-region methods for nonlinear complementarity problems. In: M. Fukushima and L. Qi (Eds) Reformulation-Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods (Dordrecht, The Netherlands: Kluwer Academic Press), pp. 211-233.
-
(1999)
Reformulation-Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods
, pp. 211-233
-
-
Kanzow, C.1
Zupke, M.2
-
24
-
-
0003951723
-
-
Philadelphia, PA: SIAM
-
Conn, A.R., Gould, N.I.M. and Toint, Ph.L., 2000, Trust-Region Methods (Philadelphia, PA: SIAM).
-
(2000)
Trust-Region Methods
-
-
Conn, A.R.1
Gould, N.I.M.2
Toint, P.L.3
-
25
-
-
0000965880
-
Computing a trust region step
-
Moré, J. and Sorensen, D.C, 1983, Computing a trust region step. SIAM Journal on Scientific and Statistical Computing, 4, 553-572.
-
(1983)
SIAM Journal on Scientific and Statistical Computing
, vol.4
, pp. 553-572
-
-
Moré, J.1
Sorensen, D.C.2
-
26
-
-
0001556338
-
Nonlinear programming without a penalty function
-
Fletcher, R. and Leyffer, S., 2002, Nonlinear programming without a penalty function. Mathematical Programming, 91, 239-269.
-
(2002)
Mathematical Programming
, vol.91
, pp. 239-269
-
-
Fletcher, R.1
Leyffer, S.2
-
27
-
-
0042354662
-
Global convergence of trust-region SQP-filter algorithms for nonlinear programming
-
Fletcher, R., Gould, N.I.M., Leyffer, S., Toint, Ph.L. and Wächter, A., 2002, Global convergence of trust-region SQP-filter algorithms for nonlinear programming. SIAM Journal of Optimization, 13, 635-659.
-
(2002)
SIAM Journal of Optimization
, vol.13
, pp. 635-659
-
-
Fletcher, R.1
Gould, N.I.M.2
Leyffer, S.3
Toint, P.L.4
Wächter, A.5
-
28
-
-
14944339092
-
A multidimensional filter algorithm for nonlinear equations and nonlinear least squares
-
Gould, N.I.M., Leyffer, S. and Toint, Ph.L., 2004, A multidimensional filter algorithm for nonlinear equations and nonlinear least squares. SIAM Journal of Optimization, 15, 17-38.
-
(2004)
SIAM Journal of Optimization
, vol.15
, pp. 17-38
-
-
Gould, N.I.M.1
Leyffer, S.2
Toint, P.L.3
-
29
-
-
19844381859
-
On the superlinear local convergence of a filter-SQP method
-
Ulbrich, S., 2004, On the superlinear local convergence of a filter-SQP method. Mathematical Programming, 100, 217-245.
-
(2004)
Mathematical Programming
, vol.100
, pp. 217-245
-
-
Ulbrich, S.1
-
30
-
-
14944387007
-
A globally convergent primal-dual interior-point filter method for nonlinear programming
-
Ulbrich, M., Ulbrich, S. and Vicente, L.N., 2004, A globally convergent primal-dual interior-point filter method for nonlinear programming. Mathematical Programming, 100, 379-410.
-
(2004)
Mathematical Programming
, vol.100
, pp. 379-410
-
-
Ulbrich, M.1
Ulbrich, S.2
Vicente, L.N.3
-
31
-
-
3042757924
-
Filter-type algorithms for solving systems of algebraic equations and inequalities
-
G. Di Pillo and A. Murli Eds, Dordrecht, The Netherlands: Kluwer, pp
-
Fletcher, R. and Leyffer, S., 2003, Filter-type algorithms for solving systems of algebraic equations and inequalities. In: G. Di Pillo and A. Murli (Eds) High-Performance Algorithms and Software, in Nonlinear Optimization (Dordrecht, The Netherlands: Kluwer), pp. 259-278.
-
(2003)
High-Performance Algorithms and Software, in Nonlinear Optimization
, pp. 259-278
-
-
Fletcher, R.1
Leyffer, S.2
-
33
-
-
84948263182
-
A special Newton-type optimization method
-
Fischer, A., 1992, A special Newton-type optimization method. Optimization, 24, 269-284.
-
(1992)
Optimization
, vol.24
, pp. 269-284
-
-
Fischer, A.1
-
34
-
-
0002308303
-
A new class of semismooth Newton-type methods for nonlinear complementarity problems
-
Kanzow, C. and Kleinmichel, H., 1998, A new class of semismooth Newton-type methods for nonlinear complementarity problems. Computational Optimization and Applications, 11, 227-251.
-
(1998)
Computational Optimization and Applications
, vol.11
, pp. 227-251
-
-
Kanzow, C.1
Kleinmichel, H.2
-
35
-
-
0029425015
-
MCPLIB: A collection of nonlinear mixed complementarity problems
-
Dirkse, S.P. and Ferris, M.C., 1995, MCPLIB: a collection of nonlinear mixed complementarity problems. Optimization Methods and Software, 5, 319-345.
-
(1995)
Optimization Methods and Software
, vol.5
, pp. 319-345
-
-
Dirkse, S.P.1
Ferris, M.C.2
-
37
-
-
0029423693
-
The PATH solver: A non-monotone stabilization scheme for mixed complementarity problems
-
Dirkse, S.P. and Ferris, M.C., 1995, The PATH solver: a non-monotone stabilization scheme for mixed complementarity problems. Optimization Methods and Software, 5, 123-156.
-
(1995)
Optimization Methods and Software
, vol.5
, pp. 123-156
-
-
Dirkse, S.P.1
Ferris, M.C.2
-
38
-
-
0000554369
-
Solution of monotone complementarity problems with locally Lipschitzian functions
-
Fischer, A., 1997, Solution of monotone complementarity problems with locally Lipschitzian functions. Mathematical Programming, 76, 513-532.
-
(1997)
Mathematical Programming
, vol.76
, pp. 513-532
-
-
Fischer, A.1
-
39
-
-
0037288670
-
On the global convergence of a filter-SQP algorithm
-
Fletcher, R., Leyffer, S. and Toint, Ph.L., 2002, On the global convergence of a filter-SQP algorithm. SIAM Journal of Optimization, 13, 44-59.
-
(2002)
SIAM Journal of Optimization
, vol.13
, pp. 44-59
-
-
Fletcher, R.1
Leyffer, S.2
Toint, P.L.3
|