Author keywords
Disintegration of Lebesgue measure; Generalized radius coordinate; Generalized surface content; Generalized trigonometric functions; Jacobians; l2, p Generalized polar coordinates; l2, p Generalized triangle coordinates; l2, p Trigonometry; ln, p Ball volume; ln, p Generalized indivisibeln method; ln, p Generalized uniform distribution on the sphere; ln, p Norm symmetric distributions; ln, p Simplicial coordinates; ln, p Spherical coordinates; Modified co area formula; p Generalized 2 and Student distributions; p Generalized Pythagoras type equation
|
-
2
-
-
0001632309
-
Laplace-Gauss integrals, Gaussian measure asymptotic behavior and probabilities of moderate deviations
-
Richter W.-D. Laplace-Gauss integrals, Gaussian measure asymptotic behavior and probabilities of moderate deviations. Z. Anal. Anwend. 4 3 (1985) 257-267
-
(1985)
Z. Anal. Anwend.
, vol.4
, Issue.3
, pp. 257-267
-
-
Richter, W.-D.1
-
3
-
-
84985372557
-
Zur Restgliedabschätzung im mehrdimensionalen Integralen Zentralen Grenzwertsatz der Wahrscheinlichkeitstheorie
-
Richter W.-D. Zur Restgliedabschätzung im mehrdimensionalen Integralen Zentralen Grenzwertsatz der Wahrscheinlichkeitstheorie. Math. Nachr. 135 (1988) 103-117
-
(1988)
Math. Nachr.
, vol.135
, pp. 103-117
-
-
Richter, W.-D.1
-
4
-
-
0002609553
-
Eine geometrische Methode in der Stochastik
-
Richter W.-D. Eine geometrische Methode in der Stochastik. Rostock. Math. Kolloq. 44 (1991) 63-72
-
(1991)
Rostock. Math. Kolloq.
, vol.44
, pp. 63-72
-
-
Richter, W.-D.1
-
5
-
-
34548065634
-
A geometric approach to finite sample and large deviation properties in two-way ANOVA with spherically distributed error vectors
-
Richter W.-D., and Steinebach J. A geometric approach to finite sample and large deviation properties in two-way ANOVA with spherically distributed error vectors. Metrika 236 (1994) 696-720
-
(1994)
Metrika
, vol.236
, pp. 696-720
-
-
Richter, W.-D.1
Steinebach, J.2
-
7
-
-
0010856550
-
Multivariate θ-generalized normal distributions
-
Goodman I.R., and Kotz S. Multivariate θ-generalized normal distributions. J. Multivariate Anal. 3 (1973) 204-219
-
(1973)
J. Multivariate Anal.
, vol.3
, pp. 204-219
-
-
Goodman, I.R.1
Kotz, S.2
-
8
-
-
0346233159
-
Probability content of regions under spherical normal distribution. I
-
Ruben H. Probability content of regions under spherical normal distribution. I. Ann. Math. Stat. 31 (1960) 598-618
-
(1960)
Ann. Math. Stat.
, vol.31
, pp. 598-618
-
-
Ruben, H.1
-
9
-
-
84934587664
-
On the numerical evaluation of a class of multivariate normal integrals
-
Ruben H. On the numerical evaluation of a class of multivariate normal integrals. Proc. Roy. Soc. Edinburgh 65 (1961) 272-281
-
(1961)
Proc. Roy. Soc. Edinburgh
, vol.65
, pp. 272-281
-
-
Ruben, H.1
-
10
-
-
0009381487
-
A geometric approach to the Gaussian law
-
Mammitzsch V., and Schneeweiß H. (Eds), Walter de Gruyter and Co., Berlin
-
Richter W.-D. A geometric approach to the Gaussian law. In: Mammitzsch V., and Schneeweiß H. (Eds). Symposia Gaussiana, Conf. B (1995), Walter de Gruyter and Co., Berlin 25-45
-
(1995)
Symposia Gaussiana, Conf. B
, pp. 25-45
-
-
Richter, W.-D.1
-
11
-
-
0036268661
-
Geometric generalization of the exponential law
-
Henschel V., and Richter W.-D. Geometric generalization of the exponential law. J. Multivariate Anal. 81 (2002) 189-204
-
(2002)
J. Multivariate Anal.
, vol.81
, pp. 189-204
-
-
Henschel, V.1
Richter, W.-D.2
-
12
-
-
0035648868
-
Exact distributions in the model of a regression line for the threshold parameter with exponential distribution of errors
-
Henschel V. Exact distributions in the model of a regression line for the threshold parameter with exponential distribution of errors. Kybernetika 37 6 (2001) 703-723
-
(2001)
Kybernetika
, vol.37
, Issue.6
, pp. 703-723
-
-
Henschel, V.1
-
13
-
-
0036455314
-
Statistical inference in simplicially contoured sample distributions
-
Henschel V. Statistical inference in simplicially contoured sample distributions. Metrika 56 (2002) 215-228
-
(2002)
Metrika
, vol.56
, pp. 215-228
-
-
Henschel, V.1
|