-
1
-
-
0000830610
-
Constant mean curvature tori in terms of elliptic functions
-
MR 88e:53006 Zbl 0597.53003
-
U. Abresch, "Constant mean curvature tori in terms of elliptic functions", J. Reine Angew. Math. 374 (1987), 169-192. MR 88e:53006 Zbl 0597.53003
-
(1987)
J. Reine Angew. Math.
, vol.374
, pp. 169-192
-
-
Abresch, U.1
-
2
-
-
84972554260
-
The Gauss map and spacelike surfaces with prescribed mean curvature in Minkowski 3-space
-
(2), MR 91e:53010 Zbl 0679.53002
-
K. Akutagawa and S. Nishikawa, "The Gauss map and spacelike surfaces with prescribed mean curvature in Minkowski 3-space", Tohoku Math. J. (2) 42:1 (1990), 67-82. MR 91e:53010 Zbl 0679.53002
-
(1990)
Tohoku Math. J.
, vol.42
, Issue.1
, pp. 67-82
-
-
Akutagawa, K.1
Nishikawa, S.2
-
3
-
-
70349643263
-
n×ℝ and applications to minimal surfaces
-
math.DG/0406426
-
n×ℝ and applications to minimal surfaces", preprint, 2004. math.DG/0406426
-
(2004)
preprint
-
-
Daniel, B.1
-
4
-
-
51249161909
-
On minimal annuli in a slab
-
MR 95f:53014 Zbl 0819.53006
-
Y. Fang, "On minimal annuli in a slab", Comment. Math. Helv. 69:3 (1994), 417-430. MR 95f:53014 Zbl 0819.53006
-
(1994)
Comment. Math. Helv.
, vol.69
, Issue.3
, pp. 417-430
-
-
Fang, Y.1
-
5
-
-
22044436839
-
On uniqueness of Riemann's examples
-
MR 98j:53010 Zbl 0898.53006
-
Y. Fang and F. Wei, "On uniqueness of Riemann's examples", Proc. Amer. Math. Soc. 126:5 (1998), 1531-1539. MR 98j:53010 Zbl 0898.53006
-
(1998)
Proc. Amer. Math. Soc.
, vol.126
, Issue.5
, pp. 1531-1539
-
-
Fang, Y.1
Wei, F.2
-
7
-
-
33846606393
-
The four-vertex theorem for surfaces of constant curvature
-
MR 7,259h Zbl 0060.34910
-
S. B. Jackson, "The four-vertex theorem for surfaces of constant curvature", Amer. J. Math. 67 (1945), 563-582. MR 7,259h Zbl 0060.34910
-
(1945)
Amer. J. Math.
, vol.67
, pp. 563-582
-
-
Jackson, S.B.1
-
8
-
-
70349637173
-
-
Second ed., Mathematics Lecture Series 9, Publish or Perish, Wilmington, DE. MR 576752 (82d:53035b) Zbl 0434.53006
-
H. B. Lawson, Jr., Lectures on minimal submanifolds, vol. 1, Second ed., Mathematics Lecture Series 9, Publish or Perish, Wilmington, DE, 1980. MR 576752 (82d:53035b) Zbl 0434.53006
-
(1980)
Lectures on minimal submanifolds
, vol.9
-
-
Lawson H.B., Jr.1
-
9
-
-
0000549478
-
The theory of triply periodic minimal surfaces
-
MR 92e:53012 Zbl 0721.53057
-
W. H. Meeks, "The theory of triply periodic minimal surfaces", Indiana Univ. Math. J. 39:3 (1990), 877-936. MR 92e:53012 Zbl 0721.53057
-
(1990)
Indiana Univ. Math. J.
, vol.39
, Issue.3
, pp. 877-936
-
-
Meeks, W.H.1
-
10
-
-
0001341418
-
The global theory of doubly periodic minimal surfaces
-
MR 90m:53017 Zbl 0676.53068
-
W. H. Meeks and H. Rosenberg, "The global theory of doubly periodic minimal surfaces", Invent. Math. 97:2 (1989), 351-379. MR 90m:53017 Zbl 0676.53068
-
(1989)
Invent. Math.
, vol.97
, Issue.2
, pp. 351-379
-
-
Meeks, W.H.1
Rosenberg, H.2
-
11
-
-
27844471074
-
Stable minimal surfaces in M ×R
-
MR 2006b:53007 Zbl 0948.65107
-
W. H. Meeks and H. Rosenberg, "Stable minimal surfaces in M ×ℝ", J. Differential Geom. 68:3 (2004), 515-534. MR 2006b:53007 Zbl 0948.65107
-
(2004)
J. Differential Geom.
, vol.68
, Issue.3
, pp. 515-534
-
-
Meeks, W.H.1
Rosenberg, H.2
-
12
-
-
33746091935
-
The theory of minimal surfaces in M ×R
-
MR MR2182702 Zbl 0948.65107
-
W. H. Meeks and H. Rosenberg, "The theory of minimal surfaces in M ×R", Comment. Math. Helv. 80:4 (2005), 811-858. MR MR2182702 Zbl 0948.65107
-
(2005)
Comment. Math. Helv.
, vol.80
, Issue.4
, pp. 811-858
-
-
Meeks, W.H.1
Rosenberg, H.2
-
13
-
-
0347131191
-
Uniqueness of the Riemann minimal examples
-
MR 99b:53013 Zbl 0916.53004
-
W. H. Meeks, J. Pérez, and A. Ros, "Uniqueness of the Riemann minimal examples", Invent. Math. 133:1 (1998), 107-132. MR 99b:53013 Zbl 0916.53004
-
(1998)
Invent. Math.
, vol.133
, Issue.1
, pp. 107-132
-
-
Meeks, W.H.1
Pérez, J.2
Ros, A.3
-
14
-
-
4644367305
-
The geometry of minimal surfaces of finite genus, I: Curvature estimates and quasiperiodicity
-
MR 2006a:53007 Zbl 1068.53012
-
W. H. Meeks, J. Pérez, and A. Ros, "The geometry of minimal surfaces of finite genus, I: Curvature estimates and quasiperiodicity", J. Differential Geom. 66:1 (2004), 1-45. MR 2006a:53007 Zbl 1068.53012
-
(2004)
J. Differential Geom.
, vol.66
, Issue.1
, pp. 1-45
-
-
Meeks, W.H.1
Pérez, J.2
Ros, A.3
-
16
-
-
0000080558
-
Isoperimetric domains in the Riemannian product of a circle with a simply connected space form and applications to free boundary problems
-
MR 2001k:53120 Zbl 0956.53049
-
R. H. L. Pedrosa and M. Ritoré, "Isoperimetric domains in the Riemannian product of a circle with a simply connected space form and applications to free boundary problems", Indiana Univ. Math. J. 48:4 (1999), 1357-1394. MR 2001k:53120 Zbl 0956.53049
-
(1999)
Indiana Univ. Math. J.
, vol.48
, Issue.4
, pp. 1357-1394
-
-
Pedrosa, R.H.L.1
Ritoré, M.2
-
17
-
-
0141655172
-
2×ℝ
-
MR 2004d:53015 Zbl 1036.53008
-
2×ℝ", Illinois J. Math. 46:4 (2002), 1177-1195. MR 2004d:53015 Zbl 1036.53008
-
(2002)
Illinois J. Math.
, vol.46
, pp. 1177-1195
-
-
Rosenberg, H.1
-
18
-
-
70349642146
-
-
preprint, Pontífica Universidade Católica, Rio de Janeiro
-
2 ×ℝ", preprint, Pontífica Universidade Católica, Rio de Janeiro, 2004.
-
(2004)
2 × ℝ
-
-
Sá Earp, R.1
Toubiana, E.2
-
19
-
-
0003618767
-
-
Conf. Proc. and Lecture Notes in Geometry and Topology, International Press, Cambridge, MA, MR 98i:58072 Zbl 0886.53004
-
R. Schoen and S. T. Yau, Lectures on harmonic maps, Conf. Proc. and Lecture Notes in Geometry and Topology 2, International Press, Cambridge, MA, 1997. MR 98i:58072 Zbl 0886.53004
-
(1997)
Lectures on harmonic maps
, vol.2
-
-
Schoen, R.1
Yau, S.T.2
-
20
-
-
0013489834
-
On surfaces of stationary area bounded by two circles, or convex curves, in parallel planes
-
(2), MR 17,632d Zbl 0070.16803
-
M. Shiffman, "On surfaces of stationary area bounded by two circles, or convex curves, in parallel planes", Ann. of Math. (2) 63 (1956), 77-90. MR 17,632d Zbl 0070.16803
-
(1956)
Ann. of Math.
, vol.63
, pp. 77-90
-
-
Shiffman, M.1
-
21
-
-
84972503454
-
Constant mean curvature surface, harmonic maps, and universal Teichmüller space
-
MR 94a:58053 Zbl 0808.53056
-
T. Y.-H. Wan, "Constant mean curvature surface, harmonic maps, and universal Teichmüller space", J. Differential Geom. 35:3 (1992), 643-657. MR 94a:58053 Zbl 0808.53056
-
(1992)
J. Differential Geom.
, vol.35
, Issue.3
, pp. 643-657
-
-
Wan, T.-H.1
|