메뉴 건너뛰기




Volumn 4448 LNCS, Issue , 2007, Pages 311-319

A genetic programming approach to feature selection and classification of instantaneous cognitive states

Author keywords

Feature extraction; fMRI data; Genetic programming

Indexed keywords

CLASSIFICATION (OF INFORMATION); COGNITIVE SYSTEMS; FEATURE EXTRACTION; MAGNETIC RESONANCE IMAGING; PROBLEM SOLVING;

EID: 34548060141     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-71805-5_34     Document Type: Conference Paper
Times cited : (9)

References (18)
  • 1
    • 0035964792 scopus 로고    scopus 로고
    • Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex
    • Haxby, J. et al. (2001) Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex. Science 2001, 293:2425-2430.
    • (2001) Science 2001 , vol.293 , pp. 2425-2430
    • Haxby, J.1
  • 5
    • 0041737619 scopus 로고    scopus 로고
    • Functional magnetic resonance imaging (fMRI) "brain reading" : Detecting and classifying distributed patterns of fMRI activity in human visual cortex
    • Cox, D. D., Savoy, R. L. (2003). Functional magnetic resonance imaging (fMRI) "brain reading" : Detecting and classifying distributed patterns of fMRI activity in human visual cortex. NeuroImage, 19, 261-270.
    • (2003) NeuroImage , vol.19 , pp. 261-270
    • Cox, D.D.1    Savoy, R.L.2
  • 6
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • M. Dash and H. Liu, (1997). Feature selection for classification, Intell. Data Anal., vol. 1, no. 3, pp. 131-156.
    • (1997) Intell. Data Anal , vol.1 , Issue.3 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 7
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • A. L. Blum and P. Langley, (1997). Selection of relevant features and examples in machine learning, Artif. Intell. Special Issue on Relevance, vol. 97, pp. 245-271.
    • (1997) Artif. Intell , vol.97 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 8
    • 0024895461 scopus 로고
    • A note on genetic algorithms for largescale feature selection
    • W. Siedlecki and J. Sklansky, (1989). A note on genetic algorithms for largescale feature selection, Patt. Recognit. Lett., vol. 10, pp. 335-347.
    • (1989) Patt. Recognit. Lett , vol.10 , pp. 335-347
    • Siedlecki, W.1    Sklansky, J.2
  • 9
    • 0035426683 scopus 로고    scopus 로고
    • Genetic feature selection in a fuzzy rule-based classification system learning process for high-dimensional problems
    • J. Casillas, O. Cordon, M. J. Del Jesus, and F. Herrera, Genetic feature selection in a fuzzy rule-based classification system learning process for high-dimensional problems, Inform. Sci., vol. 136, pp. 135-157, 2001.
    • (2001) Inform. Sci , vol.136 , pp. 135-157
    • Casillas, J.1    Cordon, O.2    Del Jesus, M.J.3    Herrera, F.4
  • 10
    • 0031999448 scopus 로고    scopus 로고
    • Self-crossover: A new genetic operator and its application to feature selection
    • N. R. Pal, S. Nandi, and M. K. Kundu, (1998). Self-crossover: A new genetic operator and its application to feature selection, Int. J. Syst. Sci., vol. 29, no. 2, pp. 207-212.
    • (1998) Int. J. Syst. Sci , vol.29 , Issue.2 , pp. 207-212
    • Pal, N.R.1    Nandi, S.2    Kundu, M.K.3
  • 11
    • 0030393867 scopus 로고    scopus 로고
    • Automatic selection of features for classification using genetic programming
    • Intelligent Information Systems, pp
    • J. Sherrah, R. E. Bogner, and A. Bouzerdoum, (1996). Automatic selection of features for classification using genetic programming, in Proc. Australian New Zealand Conf. Intelligent Information Systems, pp. 284-287.
    • (1996) Proc. Australian New Zealand Conf , pp. 284-287
    • Sherrah, J.1    Bogner, R.E.2    Bouzerdoum, A.3
  • 13
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of algorithms that select features for pattern classifiers
    • M. Kudo and J. Sklansky, Comparison of algorithms that select features for pattern classifiers, Patt. Recognit., vol. 33, pp. 25-41, 2000.
    • (2000) Patt. Recognit , vol.33 , pp. 25-41
    • Kudo, M.1    Sklansky, J.2
  • 14
    • 85027110990 scopus 로고    scopus 로고
    • Performing effective feature selection by investigating the deep structure of the data
    • Menlo Park, CA, pp
    • M. Richeldi and P. Lanzi, (1996). Performing effective feature selection by investigating the deep structure of the data, in Proc. 2nd Int. Conf. Knowledge Discovery and Data Mining. Menlo Park, CA, pp. 379-383.
    • (1996) Proc. 2nd Int. Conf. Knowledge Discovery and Data Mining , pp. 379-383
    • Richeldi, M.1    Lanzi, P.2
  • 16
    • 34548103578 scopus 로고    scopus 로고
    • W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone, Genetic Programming: An Introduction. New York: Morgan Kaufmann
    • W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone, Genetic Programming: An Introduction. New York: Morgan Kaufmann.
  • 18
    • 0035145191 scopus 로고    scopus 로고
    • Hierarchical organization of the human auditory cortex revealed by functional magnetic resonance imaging
    • Jan 1;
    • Wessinger, C.M., VanMeter, J., Tian, B., Van Lare, J., Pekar, J., Rauschecker, J.P. (2001). Hierarchical organization of the human auditory cortex revealed by functional magnetic resonance imaging. J Cogn Neurosci. 2001 Jan 1;13(1):1-7.
    • (2001) J Cogn Neurosci , vol.13 , Issue.1 , pp. 1-7
    • Wessinger, C.M.1    VanMeter, J.2    Tian, B.3    Van Lare, J.4    Pekar, J.5    Rauschecker, J.P.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.