-
1
-
-
33646146207
-
-
Mattson, A. E.; Zuhl, A. M.; Reynolds, T. E.; Scheidt, K. A. J. Am. Chem. Soc. 2006, 128, 4932.
-
(2006)
J. Am. Chem. Soc
, vol.128
, pp. 4932
-
-
Mattson, A.E.1
Zuhl, A.M.2
Reynolds, T.E.3
Scheidt, K.A.4
-
5
-
-
33746334180
-
-
Mattson, A. E.; Bharadwaj, A. R.; Zuhl, A. M.; Scheidt, K. A. J. Org. Chem. 2006, 71, 5715.
-
(2006)
J. Org. Chem
, vol.71
, pp. 5715
-
-
Mattson, A.E.1
Bharadwaj, A.R.2
Zuhl, A.M.3
Scheidt, K.A.4
-
9
-
-
27144548436
-
-
Myers, M. C.; Bharadwaj, A. R.; Milgram, B. C.; Scheidt, K. A. J. Am. Chem. Soc. 2005, 127, 14675.
-
(2005)
J. Am. Chem. Soc
, vol.127
, pp. 14675
-
-
Myers, M.C.1
Bharadwaj, A.R.2
Milgram, B.C.3
Scheidt, K.A.4
-
13
-
-
34547949046
-
-
Calculations were completed at the MP2/6-31+G(d,p) level. When there was a possibility of multiple rotamers, preliminary calculations at lower levels were used to identify the most stable one for the higher-level calculations. Reported energies include zero-point vibrational energy corrections from HF/6-31+G(d,p) calculations scaled by 0.9135 see ref 15, AU species exhibited the proper number of imaginary frequencies. Energies do not contain thermal corrections
-
Calculations were completed at the MP2/6-31+G(d,p) level. When there was a possibility of multiple rotamers, preliminary calculations at lower levels were used to identify the most stable one for the higher-level calculations. Reported energies include zero-point vibrational energy corrections from HF/6-31+G(d,p) calculations scaled by 0.9135 (see ref 15). AU species exhibited the proper number of imaginary frequencies. Energies do not contain thermal corrections.
-
-
-
-
14
-
-
34547956414
-
-
Frisch, M. J, Trucks, G. W, Schlegel, H. B, Scuseria, G. E, Robb, M. A, Cheeseman, J. R, Montgomery, J. A, Jr, Vreven, T, Kudin, K. N, Burant, J. C, Millam, J. M, Iyengar, S. S, Tomasi, J, Barone, V, Mennucci, B, Cossi, M, Scalmani, G, Rega, N, Petersson, G. A, Nakatsuji, H, Hada, M, Ehara, M, Toyota, K, Fukuda, R, Hasegawa, J, Ishida, M, Nakajima, T, Honda, Y, Kitao, O, Nakai, H, Klene, M, Li, X, Knox, J. E, Hratchian, H. P, Cross, J. B, Bakken, V, Adamo, C, Jaramillo, J, Gomperts, R, Stratmann, R. E, Yazyev, O, Austin, A. J, Cammi, R, Pomelli, C, Ochterski, J. W, Ayala, P. Y, Morokuma, K, Voth, G. A, Salvador, P, Dannenberg, J. J, Zakrzewski, V. G, Dapprich, S, Daniels, A. D, Strain, M. C, Farkas, O, Malick, D. K, Rabuck, A. D, Raghavachari, K, Foresman, J. B, Ortiz, J. V, Cui, Q, Baboul, A. G, Clifford, S, Cioslowski, J, Stefanov, B. B, Liu, G, Liashenko, A, Piskorz, P, Komaromi, I, Martin, R. L, Fox, D. J, Keit
-
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision C.02; Gaussian, Inc.; Wallingford, CT, 2004.
-
-
-
-
16
-
-
34547939581
-
-
Solvation will favor 1 because it is a zwitterion with a large dipole moment. To crudely estimate the effect, an aqueous solvation calculation using the SM5 model was completed at the MP2/6-31+G(d) level. The energetic advantage of 3 over 1 is reduced to almost zero in this model of aqueous solution. In a less polar solvent such as dichloromethane, one would expect 3 to dominate.
-
Solvation will favor 1 because it is a zwitterion with a large dipole moment. To crudely estimate the effect, an aqueous solvation calculation using the SM5 model was completed at the MP2/6-31+G(d) level. The energetic advantage of 3 over 1 is reduced to almost zero in this model of aqueous solution. In a less polar solvent such as dichloromethane, one would expect 3 to dominate.
-
-
-
-
17
-
-
34547950847
-
-
Aqueous solvation energies were computed in Spartan 02 using Cramer and Truhlar's SM5 approach in conjunction with MP2/6-31+G(d) calculations: Johnson, J. A.; Deppmeir, B. J.; Driessen, A. J.; Hehre, W. J.; Klunzinger, P. B.; Pham, I. N.; Wantanabe, M. Spartan 02, 1.0.8; Wavefunction: Irvine, CA, 2002.
-
Aqueous solvation energies were computed in Spartan 02 using Cramer and Truhlar's SM5 approach in conjunction with MP2/6-31+G(d) calculations: Johnson, J. A.; Deppmeir, B. J.; Driessen, A. J.; Hehre, W. J.; Klunzinger, P. B.; Pham, I. N.; Wantanabe, M. Spartan 02, 1.0.8; Wavefunction: Irvine, CA, 2002.
-
-
-
-
18
-
-
34547958310
-
-
Calculations at the HF level indicate that complexation of 6 with 7 provides 8 kcal/mol of stabilization in the gas phase. This is a crude measure of the barrier reduction. At the MP2 level, the complex reverts to 3 and 5 without a barrier.
-
Calculations at the HF level indicate that complexation of 6 with 7 provides 8 kcal/mol of stabilization in the gas phase. This is a crude measure of the barrier reduction. At the MP2 level, the complex reverts to 3 and 5 without a barrier.
-
-
-
-
19
-
-
34547957551
-
-
A unimolecular rearrangement from 1 to 7 to 4 was calculated. The barriers are high (7.5 and 19.3 kcal/mol relative to 1). See Supporting Information.
-
A unimolecular rearrangement from 1 to 7 to 4 was calculated. The barriers are high (7.5 and 19.3 kcal/mol relative to 1). See Supporting Information.
-
-
-
|