-
1
-
-
0000596492
-
On an inequality of H. Minc and L. Sathre
-
H. ALZER, On an inequality of H. Minc and L. Sathre, J. Math. Anal. Appl., 179, (1993), 396-402.
-
(1993)
J. Math. Anal. Appl
, vol.179
, pp. 396-402
-
-
ALZER, H.1
-
3
-
-
0038107912
-
On a generalization of Martins' inequality
-
T. H. CHAN, P. GAO AND F. QI, On a generalization of Martins' inequality, Monatsh. Math., 138, (3) (2003), 179-187.
-
(2003)
Monatsh. Math
, vol.138
, Issue.3
, pp. 179-187
-
-
CHAN, T.H.1
GAO, P.2
QI, F.3
-
4
-
-
34547716671
-
Art. 12, 93-101; Available online at URL
-
Rep. Coll, 4, 1, 2001
-
RGMIA Res. Rep. Coll., 4, (1) (2001), Art. 12, 93-101; Available online at URL: http://rgmia.vu.edu.au/v4n1.html.
-
-
-
RGMIA Res1
-
5
-
-
34547695653
-
-
CH.-P. CHEN, F. QI, Notes on proofs of Alzer's inequality, Octogon Math. Mag., 11, (1) (2003), 29-33.
-
CH.-P. CHEN, F. QI, Notes on proofs of Alzer's inequality, Octogon Math. Mag., 11, (1) (2003), 29-33.
-
-
-
-
6
-
-
0038246455
-
Monotonicity of sequences involving convex and concave functions
-
CH.-P. CHEN, F. QI, P. CERONE AND S. S. DRAGOMIR, Monotonicity of sequences involving convex and concave functions, Math. Inequal. Appl., 6, (2) (2003), 229-239.
-
(2003)
Math. Inequal. Appl
, vol.6
, Issue.2
, pp. 229-239
-
-
CHEN, C.P.1
QI, F.2
CERONE, P.3
DRAGOMIR, S.S.4
-
7
-
-
34547716671
-
Art. 1, 3-13; Available online at URL
-
Rep. Coll, 5, 1, 2002
-
RGMIA Res. Rep. Coll., 5, (1) (2002), Art. 1, 3-13; Available online at URL: http://rgmia.vu.edu.au/v5n1.html.
-
-
-
RGMIA Res1
-
8
-
-
0011333471
-
On Aker's inequality
-
N. ELEZOVIĆ, J. PEČARIĆ, On Aker's inequality, J. Math. Anal. Appl., 223, (1998), 366-369.
-
(1998)
J. Math. Anal. Appl
, vol.223
, pp. 366-369
-
-
ELEZOVIĆ, N.1
PEČARIĆ, J.2
-
9
-
-
34547712925
-
-
B.-N. GUO, F. QI, An algebraic inequality, II, RGMIA Res. Rep. Coll., 4, (1) (2001), Art. 8, 55-61; Available online at URL: http://rgmia.vu.edu.au/v4n1.html.
-
B.-N. GUO, F. QI, An algebraic inequality, II, RGMIA Res. Rep. Coll., 4, (1) (2001), Art. 8, 55-61; Available online at URL: http://rgmia.vu.edu.au/v4n1.html.
-
-
-
-
10
-
-
33644524647
-
Inequalities and monotonicity of the ratio for the geometric means of a positive arithmetic sequence with arbitrary difference
-
B.-N. GUO, F. QI, Inequalities and monotonicity of the ratio for the geometric means of a positive arithmetic sequence with arbitrary difference, Tamkang. J. Math., 34, (3) (2003), 261-270.
-
(2003)
Tamkang. J. Math
, vol.34
, Issue.3
, pp. 261-270
-
-
GUO, B.-N.1
QI, F.2
-
11
-
-
33644545431
-
Monotonicity of sequences involving geometric means of positive sequences with monotonicity and logarithmical convexity
-
B.-N. GUO, F. QI, Monotonicity of sequences involving geometric means of positive sequences with monotonicity and logarithmical convexity, Math. Inequal. Appl., 9, (1) (2006), 1-9.
-
(2006)
Math. Inequal. Appl
, vol.9
, Issue.1
, pp. 1-9
-
-
GUO, B.-N.1
QI, F.2
-
12
-
-
34547723632
-
-
J.-CH. KUANG, Chángyòng Bùdéngshì (Applied Inequalities), 2nd ed., Hunan Education Press, Changsha, China, 1993. (Chinese)
-
J.-CH. KUANG, Chángyòng Bùdéngshì (Applied Inequalities), 2nd ed., Hunan Education Press, Changsha, China, 1993. (Chinese)
-
-
-
-
13
-
-
34547710587
-
-
J.-CH. KUANG, Some extensions and refinements of Minc-Sathre inequality, Math. Gaz., 83, (1999), 123-127.
-
J.-CH. KUANG, Some extensions and refinements of Minc-Sathre inequality, Math. Gaz., 83, (1999), 123-127.
-
-
-
-
14
-
-
17444400659
-
New generalization of H. Alzer's inequality
-
ZH. LIU, New generalization of H. Alzer's inequality, Tamkang J. Math., 34, (3) (2003), 255-260.
-
(2003)
Tamkang J. Math
, vol.34
, Issue.3
, pp. 255-260
-
-
-
15
-
-
84985366081
-
Arithmetic and geometric means, an applications to Lorentz sequence spaces
-
J. S. MARTINS, Arithmetic and geometric means, an applications to Lorentz sequence spaces, Math Nachr., 139, (1988), 281-288.
-
(1988)
Math Nachr
, vol.139
, pp. 281-288
-
-
MARTINS, J.S.1
-
16
-
-
0003186921
-
-
1/r, Proc. Edinburgh Math. Soc., 14, (1964/65), 41-46.
-
1/r, Proc. Edinburgh Math. Soc., 14, (1964/65), 41-46.
-
-
-
-
18
-
-
0038784818
-
-
College Arts Sei. Chiba Univ, Japanese
-
N. OZEKI, On some inequalities, J. College Arts Sei. Chiba Univ., 4, (3) (1965), 211-214. (Japanese)
-
(1965)
On some inequalities, J
, vol.4
, Issue.3
, pp. 211-214
-
-
OZEKI, N.1
-
19
-
-
34547718163
-
-
F. QI, An algebraic inequality, J. Inequal. Pure Appl. Math., 2, (1) (2001), Art. 13; Available online at URL: http://jipam.vu.edu.au/article.php?sid=129.
-
F. QI, An algebraic inequality, J. Inequal. Pure Appl. Math., 2, (1) (2001), Art. 13; Available online at URL: http://jipam.vu.edu.au/article.php?sid=129.
-
-
-
-
20
-
-
34547716671
-
Art. 8, 81-83; Available online at URL
-
Rep. Coll, 2, 1, 1999
-
RGMIA Res. Rep. Coll., 2, (1) (1999), Art. 8, 81-83; Available online at URL: http://rgmia.vu.edu.au/v2n1.html.
-
-
-
RGMIA Res1
-
21
-
-
0038107888
-
Generalizations of Alzer's and Kuang's inequality
-
F. QI, Generalizations of Alzer's and Kuang's inequality, Tamkang J. Math., 31, (3) (2000), 223-227.
-
(2000)
Tamkang J. Math
, vol.31
, Issue.3
, pp. 223-227
-
-
QI, F.1
-
22
-
-
34547716671
-
Art. 12, 891-895; Available online at URL
-
Rep. Coll, 2, 6, 1999
-
RGMIA Res. Rep. Coll., 2, (6) (1999), Art. 12, 891-895; Available online at URL: http://rgmia.vu.edu.au/v2n6.html.
-
-
-
RGMIA Res1
-
23
-
-
0009643611
-
Generalization of H. Alzer's inequality
-
F. QI, Generalization of H. Alzer's inequality, J. Math. Anal. Appl., 240, (1999), 294-297.
-
(1999)
J. Math. Anal. Appl
, vol.240
, pp. 294-297
-
-
QI, F.1
-
24
-
-
17444393050
-
Inequalities and monotonicity of sequences involving n√(n + k)!/k!
-
F. QI, Inequalities and monotonicity of sequences involving n√(n + k)!/k!, Soochow J. Math., 29, (4) (2004), 353-361.
-
(2004)
Soochow J. Math
, vol.29
, Issue.4
, pp. 353-361
-
-
QI, F.1
-
25
-
-
34547716671
-
Art. 8, 685-692; Available online at URL
-
Rep. Coll, 2, 5, 1999
-
RGMIA Res. Rep. Coll., 2, (5) (1999), Art. 8, 685-692; Available online at URL: http://rgmia.vu.edu.au/v2n5.html.
-
-
-
RGMIA Res1
-
26
-
-
33644523027
-
inequalities and monotonicity of the ratio for the geometric means of a positive arithmetic sequence with unit difference
-
F. QI, inequalities and monotonicity of the ratio for the geometric means of a positive arithmetic sequence with unit difference. Austral. Math. Soc. Gaz., 30, (3) (2003), 142-147.
-
(2003)
Austral. Math. Soc. Gaz
, vol.30
, Issue.3
, pp. 142-147
-
-
QI, F.1
-
28
-
-
34547719089
-
-
RGMIA Res. Rep. Coll., 6, (2003), suppl., Art. 2; Available online at URL: http://rgmia.vu.edu.au/v6 (E).html.
-
RGMIA Res. Rep. Coll., 6, (2003), suppl., Art. 2; Available online at URL: http://rgmia.vu.edu.au/v6 (E).html.
-
-
-
-
29
-
-
34547710586
-
-
F. QI, On a new generalization of Martins' inequality, RGMIA Res. Rep. Coll., 5, (3) (2002), Art. 13, 527-538; Available online at URL: http://rgmia.vu.edu.au/v5n3.html.
-
F. QI, On a new generalization of Martins' inequality, RGMIA Res. Rep. Coll., 5, (3) (2002), Art. 13, 527-538; Available online at URL: http://rgmia.vu.edu.au/v5n3.html.
-
-
-
-
30
-
-
34547696371
-
-
F. QI, CH.-P. CHEN, Monotonicity and inequalities for ratio of the generalized logarithmic means, RGMIA Res. Rep. Coll., 6, (2) (2003), Art. 18, 333-339; Available online at URL: http://rgmia.vu.edu.au/v6n2.html.
-
F. QI, CH.-P. CHEN, Monotonicity and inequalities for ratio of the generalized logarithmic means, RGMIA Res. Rep. Coll., 6, (2) (2003), Art. 18, 333-339; Available online at URL: http://rgmia.vu.edu.au/v6n2.html.
-
-
-
-
31
-
-
0038107897
-
On a new generalization of Alzer's inequality
-
F. QI, L. DEBNATH, On a new generalization of Alzer's inequality, Internat. J. Math. Math. Sci., 23, (12) (2000), 815-818.
-
(2000)
Internat. J. Math. Math. Sci
, vol.23
, Issue.12
, pp. 815-818
-
-
QI, F.1
DEBNATH, L.2
-
32
-
-
0037770285
-
An inequality between ratio of the extended logarithmic means and ratio of the exponential means
-
F. QI, B.-N. GUO, An inequality between ratio of the extended logarithmic means and ratio of the exponential means, Taiwanese J. Math., 7, (2) (2003), 229-237.
-
(2003)
Taiwanese J. Math
, vol.7
, Issue.2
, pp. 229-237
-
-
QI, F.1
GUO, B.-N.2
-
33
-
-
34547716671
-
Art. 8, 55-61; Available online at URL
-
Rep. Coll, 4, 1, 2001
-
RGMIA Res. Rep. Coll., 4, (1) (2001), Art. 8, 55-61; Available online at URL: http://rgmia.vu.edu.au/v4n1.html.
-
-
-
RGMIA Res1
-
34
-
-
33644555766
-
Monotonicity of sequences involving convex function and sequence
-
F. QI, B.-N. GUO, Monotonicity of sequences involving convex function and sequence, Math. Inequal. Appl. 9, (2) (2006), 247-254.
-
(2006)
Math. Inequal. Appl
, vol.9
, Issue.2
, pp. 247-254
-
-
QI, F.1
GUO, B.-N.2
-
35
-
-
34547716671
-
Art. 14, 321-329; Available online at URL
-
Rep. Coll, 3, 2, 2000
-
RGMIA Res. Rep. Coll., 3, (2) (2000), Art. 14, 321-329; Available online at URL: http://rgmia.vu.edu.au/v3n2.html.
-
-
-
RGMIA Res1
-
36
-
-
34547707493
-
-
F. QI, B.-N. GUO, Monotonicity of sequences involving geometric means of positive sequences with logarithmical convexity, RGMIA Res. Rep. Coll., 5, (3) (2002), Art. 10, 497-507; Available online at URL: http://rgmia.vu.edu.au/v5n3.html.
-
F. QI, B.-N. GUO, Monotonicity of sequences involving geometric means of positive sequences with logarithmical convexity, RGMIA Res. Rep. Coll., 5, (3) (2002), Art. 10, 497-507; Available online at URL: http://rgmia.vu.edu.au/v5n3.html.
-
-
-
-
37
-
-
34547724573
-
-
F. QI, B.-N. GUO, Some inequalities involving the geometric mean of natural numbers and the ratio of gamma functions, RGMIA Res. Rep. Coll., 4, (1) (2001), Art. 6, 41-48; Available online at URL: http://rgmia.vu.edu.au/v4n1.html.
-
F. QI, B.-N. GUO, Some inequalities involving the geometric mean of natural numbers and the ratio of gamma functions, RGMIA Res. Rep. Coll., 4, (1) (2001), Art. 6, 41-48; Available online at URL: http://rgmia.vu.edu.au/v4n1.html.
-
-
-
-
38
-
-
17444410334
-
A lower bound for ratio of power means
-
F. QI, B.-N. GUO AND L. DEBNATH, A lower bound for ratio of power means, Internat. J. Math. Math. Sci., 2004, (1) (2004), 49-53.
-
(2004)
Internat. J. Math. Math. Sci
, vol.2004
, Issue.1
, pp. 49-53
-
-
QI, F.1
GUO, B.-N.2
DEBNATH, L.3
-
39
-
-
34547716671
-
Art. 2; Available online at URL
-
Rep. Coll, 5, 4, 2002
-
RGMIA Res. Rep. Coll., 5, (4) (2002), Art. 2; Available online at URL: http://rgmia.vu.edu.au/v5n4.html.
-
-
-
RGMIA Res1
-
40
-
-
0038107892
-
Generalization of H. Minc and J. Sathre's inequality
-
F. QI, Q.-M. LUO, Generalization of H. Minc and J. Sathre's inequality, Tamkang J. Math., 31, (2) (2000), 145-148.
-
(2000)
Tamkang J. Math
, vol.31
, Issue.2
, pp. 145-148
-
-
QI, F.1
LUO, Q.-M.2
-
41
-
-
34547716671
-
Art. 14, 909-912; Available online at URL
-
Rep. Coll, 2, 6, 1999
-
RGMIA Res. Rep. Coll., 2, (6) (1999), Art. 14, 909-912; Available online at URL: http://rgmia.vu.edu.au/v2n6.html.
-
-
-
RGMIA Res1
-
42
-
-
27844574964
-
Inequalities for the ratios of the mean values of functions
-
F. QI, N. TOWGHI, Inequalities for the ratios of the mean values of functions. Nonlinear Funct. Anal. Appl., 9, (1) (2004), 15-23.
-
(2004)
Nonlinear Funct. Anal. Appl
, vol.9
, Issue.1
, pp. 15-23
-
-
QI, F.1
TOWGHI, N.2
-
43
-
-
34547724389
-
-
An inequality for the ratios of the arithmetic means of functions with a positive parameter, RGMIA Res. Rep. Coll., 4, (2) (2001), Art. 15, 305-309; Available online at URL: http://rgmia.vu.edu.au/v4n2.html.
-
An inequality for the ratios of the arithmetic means of functions with a positive parameter, RGMIA Res. Rep. Coll., 4, (2) (2001), Art. 15, 305-309; Available online at URL: http://rgmia.vu.edu.au/v4n2.html.
-
-
-
-
44
-
-
34547724390
-
-
J. A. SAMPAIO MARTINS, Inequalities of Rado-Popoviciu type, In: Marques de Sá, Eduardo (ed.) et al. Mathematical studies. Homage to Professor Doctor Luís de Albuquerque. Coimbra: Universidade de Coimbra, Faculdade de Ciências e Tecnologia, Departamento de Matemática, (1994), 169-175.
-
J. A. SAMPAIO MARTINS, Inequalities of Rado-Popoviciu type, In: Marques de Sá, Eduardo (ed.) et al. Mathematical studies. Homage to Professor Doctor Luís de Albuquerque. Coimbra: Universidade de Coimbra, Faculdade de Ciências e Tecnologia, Departamento de Matemática, (1994), 169-175.
-
-
-
-
45
-
-
34547696370
-
-
J. SÁNDOR, Comments on an inequality for the sum of powers of positive numbers, RGMIA Res. Rep. Coll., 2, (2) (1999), 259-261; Available online at URL: http://rgmia.vu.edu.au/v2n2.html.
-
J. SÁNDOR, Comments on an inequality for the sum of powers of positive numbers, RGMIA Res. Rep. Coll., 2, (2) (1999), 259-261; Available online at URL: http://rgmia.vu.edu.au/v2n2.html.
-
-
-
-
46
-
-
0011344798
-
On an inequality of Alzer
-
J. SÁNDOR, On an inequality of Alzer, J. Math. Anal. Appl., 192, (1995), 1034-1035.
-
(1995)
J. Math. Anal. Appl
, vol.192
, pp. 1034-1035
-
-
SÁNDOR, J.1
-
47
-
-
34547719088
-
-
J. SÁNDOR, On an inequality of Bennett, General Mathematics (Sibiu), 3, (3-4) (1995), 121-125.
-
J. SÁNDOR, On an inequality of Bennett, General Mathematics (Sibiu), 3, (3-4) (1995), 121-125.
-
-
-
-
48
-
-
0002603040
-
Generalizations of the logarithmic mean
-
K. B. STOLARSKY, Generalizations of the logarithmic mean, Math. Mag., 48, (1975), 87-92.
-
(1975)
Math. Mag
, vol.48
, pp. 87-92
-
-
STOLARSKY, K.B.1
-
49
-
-
0000016560
-
The power and generalized logarithmic means
-
K. B. STOLARSKY, The power and generalized logarithmic means, Amer. Math. Monthly, 87, (1980), 545-548.
-
(1980)
Amer. Math. Monthly
, vol.87
, pp. 545-548
-
-
STOLARSKY, K.B.1
-
50
-
-
0011339842
-
An elementary proof of H. Alzer's inequality
-
J. S. UME, An elementary proof of H. Alzer's inequality, Math. Japon., 44, (3) (1996), 521-522.
-
(1996)
Math. Japon
, vol.44
, Issue.3
, pp. 521-522
-
-
UME, J.S.1
-
51
-
-
34547705940
-
A poof of monotonicity of H
-
Chinese
-
M.-J. WANG, B. HU, A poof of monotonicity of H. Alzer's function and some properties, Shùxué de Shǐjiàn yǔ Rènshí (Mathematics in Theory and Practice), 36, (10) (2006), 243-246. (Chinese)
-
(2006)
Alzer's function and some properties, Shùxué de Shǐjiàn yǔ Rènshí (Mathematics in Theory and Practice)
, vol.36
, Issue.10
, pp. 243-246
-
-
WANG, M.-J.1
HU, B.2
-
52
-
-
34547712157
-
-
Z.-K. XU, On further generalization of an inequality of H. Alzer, J. Zhējiang Shīfàn Dàxué Xuébào ZÍrǎn Kīxué Bǎn (J. Zhejiang Norm. Univ. (Nat. Sci.)), 25, (3) (2002), 217-220. (Chinese)
-
Z.-K. XU, On further generalization of an inequality of H. Alzer, J. Zhējiang Shīfàn Dàxué Xuébào ZÍrǎn Kīxué Bǎn (J. Zhejiang Norm. Univ. (Nat. Sci.)), 25, (3) (2002), 217-220. (Chinese)
-
-
-
-
53
-
-
0036681295
-
A general form of Alzer's inequality
-
Z.-K. XU, D.-P. XU, A general form of Alzer's inequality, Comput. Math. Appl., 44, (3-4) (2002), 365-373.
-
(2002)
Comput. Math. Appl
, vol.44
, Issue.3-4
, pp. 365-373
-
-
XU, Z.-K.1
XU, D.-P.2
|