-
1
-
-
0042510302
-
Electric Fracture and Polarization Switching Properties of Piezoelectric Ceramic PZT Studied by the Modified Small Punch Test
-
1 Y. Shindo, F. Narita, K. Horiguchi, Y. Magara, and M. Yoshida, “ Electric Fracture and Polarization Switching Properties of Piezoelectric Ceramic PZT Studied by the Modified Small Punch Test,” Acta Mater., 51 [15] 4773–82 (2003).
-
(2003)
Acta Mater.
, vol.51
, Issue.[15]
, pp. 4773-82
-
-
Shindo, Y.1
Narita, F.2
Horiguchi, K.3
Magara, Y.4
Yoshida, M.5
-
2
-
-
0037411615
-
Influence of Electric Fields on the Fracture of Ferroelectric Ceramics
-
2 A. Ricoeur and M. Kuna, “ Influence of Electric Fields on the Fracture of Ferroelectric Ceramics,” J. Eur. Ceram. Soc., 23 [8] 1313–28 (2003).
-
(2003)
J. Eur. Ceram. Soc.
, vol.23
, Issue.[8]
, pp. 1313-28
-
-
Ricoeur, A.1
Kuna, M.2
-
3
-
-
20544467647
-
Double Torsion Testing and Finite Element Analysis for Determining the Electric Fracture Properties of Piezoelectric Ceramics
-
3 Y. Shindo, F. Narita, and M. Mikami, “ Double Torsion Testing and Finite Element Analysis for Determining the Electric Fracture Properties of Piezoelectric Ceramics,” J. Appl. Phys., 97, 114109 (2005).
-
(2005)
J. Appl. Phys.
, vol.97
, pp. 114109
-
-
Shindo, Y.1
Narita, F.2
Mikami, M.3
-
4
-
-
0028478885
-
Electric‐Field‐Induced Fatigue Crack Growth in Piezoelectrics
-
4 H. C. Cao and A. G. Evans, “ Electric‐Field‐Induced Fatigue Crack Growth in Piezoelectrics,” J. Am. Ceram. Soc., 77 [7] 1783–6 (1994).
-
(1994)
J. Am. Ceram. Soc.
, vol.77
, Issue.[7]
, pp. 1783-6
-
-
Cao, H.C.1
Evans, A.G.2
-
5
-
-
0029213016
-
Electric Field Induced Cracking in Ferroelectric Ceramics
-
5 C. S. Lynch, W. Yang, L. Collier, Z. Suo, and R. M. McMeeking, “ Electric Field Induced Cracking in Ferroelectric Ceramics,” Ferroelectrics, 166 [1–4] 11–30 (1995).
-
(1995)
Ferroelectrics
, vol.166
, Issue.[1–4]
, pp. 11-30
-
-
Lynch, C.S.1
Yang, W.2
Collier, L.3
Suo, Z.4
McMeeking, R.M.5
-
6
-
-
0032659452
-
Cyclic Fatigue Due to Electric Loading in Ferroelectric Ceramics
-
6 H. Weitzing, G. A. Schneider, J. Steffens, M. Hammer, and M. J. Hoffmann, “ Cyclic Fatigue Due to Electric Loading in Ferroelectric Ceramics,” J. Eur. Ceram. Soc., 19 [6–7] 1333–7 (1999).
-
(1999)
J. Eur. Ceram. Soc.
, vol.19
, Issue.[6–7]
, pp. 1333-7
-
-
Weitzing, H.1
Schneider, G.A.2
Steffens, J.3
Hammer, M.4
Hoffmann, M.J.5
-
7
-
-
3142752176
-
Fatigue Crack Growth in Ferroelectric Ceramics Driven by Alternating Electric Fields
-
7 D. Fang, B. Liu, and C. T. Sun, “ Fatigue Crack Growth in Ferroelectric Ceramics Driven by Alternating Electric Fields,” J. Am. Ceram. Soc., 87 [5] 840–6 (2004).
-
(2004)
J. Am. Ceram. Soc.
, vol.87
, Issue.[5]
, pp. 840-6
-
-
Fang, D.1
Liu, B.2
Sun, C.T.3
-
8
-
-
27744562216
-
Fatigue Crack Growth in Ferroelectrics Under Electrical Loading
-
8 J. Shieh, J. E. Huber, and N. A. Fleck, “ Fatigue Crack Growth in Ferroelectrics Under Electrical Loading,” J. Eur. Ceram. Soc., 26 [1–2] 95–109 (2006).
-
(2006)
J. Eur. Ceram. Soc.
, vol.26
, Issue.[1–2]
, pp. 95-109
-
-
Shieh, J.1
Huber, J.E.2
Fleck, N.A.3
-
9
-
-
27644470499
-
Cyclic Fatigue Crack Growth in PZT Under Mechanical Loading
-
9 C. R. J. Salz, M. Hoffman, I. Westram, and J. Rodel, “ Cyclic Fatigue Crack Growth in PZT Under Mechanical Loading,” J. Am. Ceram. Soc., 88 [5] 1331–3 (2005).
-
(2005)
J. Am. Ceram. Soc.
, vol.88
, Issue.[5]
, pp. 1331-3
-
-
Salz, C.R.J.1
Hoffman, M.2
Westram, I.3
Rodel, J.4
-
10
-
-
33846352858
-
Fatigue Crack Growth Law for Ferroelectrics Under Cyclic Electrical and Combined Electromechanical Loading
-
10 I. Westram, A. Ricoeur, A. Emrich, J. Rodel, and M. Kuna, “ Fatigue Crack Growth Law for Ferroelectrics Under Cyclic Electrical and Combined Electromechanical Loading,” J. Eur. Ceram. Soc., 27 [6] 2485–94 (2007).
-
(2007)
J. Eur. Ceram. Soc.
, vol.27
, Issue.[6]
, pp. 2485-94
-
-
Westram, I.1
Ricoeur, A.2
Emrich, A.3
Rodel, J.4
Kuna, M.5
-
11
-
-
0036572438
-
Evaluation of Electric Fracture Properties of Piezoelectric Ceramics Using the Finite Element and Single‐Edge Precracked‐Beam Methods
-
11 Y. Shindo, H. Murakami, K. Horiguchi, and F. Narita, “ Evaluation of Electric Fracture Properties of Piezoelectric Ceramics Using the Finite Element and Single‐Edge Precracked‐Beam Methods,” J. Am. Ceram. Soc., 85 [5] 1243–8 (2002).
-
(2002)
J. Am. Ceram. Soc.
, vol.85
, Issue.[5]
, pp. 1243-8
-
-
Shindo, Y.1
Murakami, H.2
Horiguchi, K.3
Narita, F.4
-
12
-
-
3543138918
-
Electroelastic Fracture Mechanics of Piezoelectric Ceramics, in: Mechanics of Electromagnetic Material Systems and Structures
-
12 F. Narita, Y. Shindo, and K. Horiguchi, “ Electroelastic Fracture Mechanics of Piezoelectric Ceramics ”; pp. 89–101 in Mechanics of Electromagnetic Material Systems and Structures, Edited by Y. Shindo. WIT Press, Southampton, Boston, 2003.
-
(2003)
, pp. 89-101
-
-
Narita, F.1
Shindo, Y.2
Horiguchi, K.3
-
13
-
-
0346154959
-
The Energy Release Rate for a Griffith Crack in a Piezoelectric Material
-
13 R. M. McMeeking, “ The Energy Release Rate for a Griffith Crack in a Piezoelectric Material,” Eng. Fract. Mech., 71 [7–8] 1149–63 (2004).
-
(2004)
Eng. Fract. Mech.
, vol.71
, Issue.[7–8]
, pp. 1149-63
-
-
McMeeking, R.M.1
-
14
-
-
0028407551
-
A New Electric Boundary Condition of Electric Fracture Mechanics and Its Applications
-
14 T. H. Hao and Z. Y. Shen, “ A New Electric Boundary Condition of Electric Fracture Mechanics and Its Applications,” Eng. Fract. Mech., 47 [6] 793–802 (1994).
-
(1994)
Eng. Fract. Mech.
, vol.47
, Issue.[6]
, pp. 793-802
-
-
Hao, T.H.1
Shen, Z.Y.2
-
15
-
-
0342545904
-
Crack Tip Energy Release Rate for a Piezoelectric Compact Tension Specimen
-
15 R. M. McMeeking, “ Crack Tip Energy Release Rate for a Piezoelectric Compact Tension Specimen,” Eng. Fract. Mech., 64 [2] 217–44 (1999).
-
(1999)
Eng. Fract. Mech.
, vol.64
, Issue.[2]
, pp. 217-44
-
-
McMeeking, R.M.1
-
16
-
-
0025496391
-
Treatment of Singularities in Cracked Bodies
-
16 K. N. Shivakumar and I. S. Raju, “ Treatment of Singularities in Cracked Bodies,” Int. J. Fract., 45 [3] 159–78 (1990).
-
(1990)
Int. J. Fract.
, vol.45
, Issue.[3]
, pp. 159-78
-
-
Shivakumar, K.N.1
Raju, I.S.2
-
17
-
-
0024011176
-
Fatigue Crack Growth from Indentation Flaw in Ceramics
-
17 T. Hoshide, T. Ohara, and T. Yamada, “ Fatigue Crack Growth from Indentation Flaw in Ceramics,” Int. J. Fract., 37 [1] 47–59 (1988).
-
(1988)
Int. J. Fract.
, vol.37
, Issue.[1]
, pp. 47-59
-
-
Hoshide, T.1
Ohara, T.2
Yamada, T.3
-
18
-
-
0031270292
-
Fatigue and Static Crack Propagation in Yttria‐Stabilized Tetragonal Zirconia Polycrystals
-
18 J. Alcala and M. Anglada, “ Fatigue and Static Crack Propagation in Yttria‐Stabilized Tetragonal Zirconia Polycrystals: Crack Growth Micromechanisms and Precracking Effects,” J. Am. Ceram. Soc., 80 [11] 2759–72 (1997).
-
(1997)
Crack Growth Micromechanisms and Precracking Effects
, vol.80
, Issue.[11]
, pp. 2759-72
-
-
Alcala, J.1
Anglada, M.2
-
19
-
-
0026797011
-
Cyclic Fatigue‐Crack Growth in a SiC‐Whisker‐Reinforced Alumina Ceramic Composite
-
19 R. H. Dauskardt, M. R. James, J. R. Porter, and R. O. Ritchie, “ Cyclic Fatigue‐Crack Growth in a SiC‐Whisker‐Reinforced Alumina Ceramic Composite: Long-and Small-Crack Behavior,” J. Am. Ceram. Soc., 75 [4] 759–71 (1992).
-
(1992)
Long- and Small-Crack Behavior
, vol.75
, Issue.[4]
, pp. 759-71
-
-
Dauskardt, R.H.1
James, M.R.2
Porter, J.R.3
Ritchie, R.O.4
|