메뉴 건너뛰기




Volumn 24, Issue 5, 2007, Pages 773-793

The Schrödinger-Maxwell system with Dirac mass

Author keywords

Point interaction; Schr dinger Maxwell system

Indexed keywords

BOUNDARY CONDITIONS; ELECTRIC POTENTIAL; ELECTROSTATICS; MAXWELL EQUATIONS; PROBLEM SOLVING;

EID: 34547580919     PISSN: 02941449     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.anihpc.2006.06.005     Document Type: Article
Times cited : (9)

References (14)
  • 1
    • 0347354930 scopus 로고    scopus 로고
    • The Cauchy problem for the Schrödinger equation in dimension three with concentrated nonlinearity
    • Adami R., Dell'Antonio G., Figari R., and Teta A. The Cauchy problem for the Schrödinger equation in dimension three with concentrated nonlinearity. Ann. Inst. H. Poincaré Anal. Non Linéaire 20 1 (2003) 477-500
    • (2003) Ann. Inst. H. Poincaré Anal. Non Linéaire , vol.20 , Issue.1 , pp. 477-500
    • Adami, R.1    Dell'Antonio, G.2    Figari, R.3    Teta, A.4
  • 2
    • 0842265107 scopus 로고    scopus 로고
    • Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity
    • Adami R., Dell'Antonio G., Figari R., and Teta A. Blow-up solutions for the Schrödinger equation in dimension three with a concentrated nonlinearity. Ann. Inst. H. Poincaré Anal. Non Linéaire 21 1 (2004) 121-137
    • (2004) Ann. Inst. H. Poincaré Anal. Non Linéaire , vol.21 , Issue.1 , pp. 121-137
    • Adami, R.1    Dell'Antonio, G.2    Figari, R.3    Teta, A.4
  • 3
    • 0041738945 scopus 로고    scopus 로고
    • A class of nonlinear Schrödinger equations with concentrated nonlinearity
    • Adami R., and Teta A. A class of nonlinear Schrödinger equations with concentrated nonlinearity. J. Func. Anal. 180 1 (2001) 148-175
    • (2001) J. Func. Anal. , vol.180 , Issue.1 , pp. 148-175
    • Adami, R.1    Teta, A.2
  • 4
    • 0000049356 scopus 로고
    • p approach to the Dirichlet problem. I. Regularity theorems
    • p approach to the Dirichlet problem. I. Regularity theorems. Ann. Scuola Norm. Sup. Pisa (3) 13 (1959) 405-448
    • (1959) Ann. Scuola Norm. Sup. Pisa (3) , vol.13 , pp. 405-448
    • Agmon, S.1
  • 6
    • 84972547058 scopus 로고
    • Schrödinger operators with magnetic fields I. General interaction
    • Avron J., Herbst I., and Simon B. Schrödinger operators with magnetic fields I. General interaction. Duke Math. J. 45 4 (1978) 847-883
    • (1978) Duke Math. J. , vol.45 , Issue.4 , pp. 847-883
    • Avron, J.1    Herbst, I.2    Simon, B.3
  • 7
    • 0001223636 scopus 로고
    • Schrödinger operators with magnetic fields I. Atoms in homogeneous magnetic fields
    • Avron J., Herbst I., and Simon B. Schrödinger operators with magnetic fields I. Atoms in homogeneous magnetic fields. Comm. Math. Phys. 79 4 (1981) 529-572
    • (1981) Comm. Math. Phys. , vol.79 , Issue.4 , pp. 529-572
    • Avron, J.1    Herbst, I.2    Simon, B.3
  • 8
    • 0001036379 scopus 로고    scopus 로고
    • An eigenvalue problem for the Schrödinger-Maxwell equations
    • Benci V., and Fortunato D. An eigenvalue problem for the Schrödinger-Maxwell equations. Topol. Methods Nonlinear Anal. 11 2 (1998) 283-293
    • (1998) Topol. Methods Nonlinear Anal. , vol.11 , Issue.2 , pp. 283-293
    • Benci, V.1    Fortunato, D.2
  • 9
    • 0036014346 scopus 로고    scopus 로고
    • Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations
    • Benci V., and Fortunato D. Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations. Rev. Math. Phys. 14 4 (2002) 409-420
    • (2002) Rev. Math. Phys. , vol.14 , Issue.4 , pp. 409-420
    • Benci, V.1    Fortunato, D.2
  • 10
    • 4644242863 scopus 로고    scopus 로고
    • A multiplicity result for the Schrödinger-Maxwell equations
    • Coclite G.M. A multiplicity result for the Schrödinger-Maxwell equations. Ann. Polon. Math. 79 1 (2002) 21-30
    • (2002) Ann. Polon. Math. , vol.79 , Issue.1 , pp. 21-30
    • Coclite, G.M.1
  • 11
    • 4644289841 scopus 로고    scopus 로고
    • A multiplicity result for the nonlinear Schrödinger-Maxwell equations
    • Coclite G.M. A multiplicity result for the nonlinear Schrödinger-Maxwell equations. Comm. Appl. Anal. 7 2-3 (2003) 417-423
    • (2003) Comm. Appl. Anal. , vol.7 , Issue.2-3 , pp. 417-423
    • Coclite, G.M.1
  • 13
    • 0002221209 scopus 로고
    • Classical bounds and limits for energy distributions of Hamiltonian operators in electromagnetic fields
    • Combes J.M., Schrader R., and Seiler R. Classical bounds and limits for energy distributions of Hamiltonian operators in electromagnetic fields. Ann. Phys. 111 1 (1978) 1-18
    • (1978) Ann. Phys. , vol.111 , Issue.1 , pp. 1-18
    • Combes, J.M.1    Schrader, R.2    Seiler, R.3
  • 14
    • 3042986444 scopus 로고    scopus 로고
    • Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations
    • Esteban M.J., Georgiev V., and Sere E. Stationary solutions of the Maxwell-Dirac and the Klein-Gordon-Dirac equations. Calc. Var. 4 3 (1996) 265-281
    • (1996) Calc. Var. , vol.4 , Issue.3 , pp. 265-281
    • Esteban, M.J.1    Georgiev, V.2    Sere, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.